新闻中心

EEPW首页 > EDA/PCB > 业界动态 > 下一代5nm 2D材料可望突破摩尔定律限制?

下一代5nm 2D材料可望突破摩尔定律限制?

作者:时间:2017-07-20来源:eettaiwan收藏

  Imec 开发下一代 2D 通道 FET 架构,证实采用 2D 非等向性材料可让延续到超越 节点…

本文引用地址:http://www.eepw.com.cn/article/201707/362030.htm

  根据比利时研究机构Imec指出,设计人员可以选择采用2D非等向性(颗粒状速度更快)材料(如黑磷单层),让(Moore's Law)扩展到超越5纳米(nm)节点。Imec研究人员在Semicon West期间举办的年度Imec技术论坛(Imec Technology Forum)发表其最新研究成果。

  

  Imec开发的下一代2D通道场效电晶体(FET)架构,显示堆叠闸极和原子薄层结构 (来源:Imec)

  Imec展示的研究计划专注于实现高性能逻辑应用的场效电晶体(FET),作为其Core CMOS计划的一部份。Imec及其合作伙伴分别在材料、元件与电路层级实现协同最佳化,证实了在传输方向上可使用具有较小有效质量之2D非等向性黑磷单层的概念。这种黑磷夹层于低k电介质的介面层之间,并在高k电介质之上部署堆叠的双闸极,以控制原子级的薄层通道。

  Imec展示了10nm节点的协同最佳化方案,并表示该架构可以使用半伏特(< 0.5V)的电源和小于50埃(0.5nm)的有效氧化物厚度,使其FET在5nm节点以后持续扩展,以实现高性能逻辑应用。

  研究人员预测,所展示的架构、材料和协同最佳化技术将有助于产生可靠的FET,且其厚度可一直降低至单原子级,闸极长度短于20埃,推动纳米线FET持续进展成为FinFET的接班技术。Imec目前正评估除了黑色荧光粉以外的其他材料作为主要的备选技术,将纳米线FET延伸到原子级2D通道。

  根据Imec,除了为FET延续摩尔定律的微缩规律以外,2D材料还有助于加强光子学、光电子学、生物感测、能量储存和太阳光电的发展。

  Imec的研究伙伴包括来自比利时鲁汶天主教大学(Catholic University of Leuven)和义大利比萨大学(Pisa University)的科学家。这项研究的赞助资金来自欧盟(EU)的石墨烯旗舰(Graphene Flagship)研究计划以及Imec Core CMOS计划的合作伙伴,包括GlobalFoundries、华为(Huawei)、英特尔(Intel)、美光(Micron)、高通(Qualcomm)、三星(Samsung)、SK海力士(SK Hynix)、Sony Semiconductor Solutions和台积电(TSMC)共同赞助了这项计划。

  有关这项研究的更多资讯刊载在《自然》(Nature)科学报导的“基于FinFET的2D材料-设备-电路协同最佳化可实现超大型技术制程”(Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes),Imec并在文中提供了为下一代10nm芯片高性能逻辑芯片选择材料、设计元件和最佳化性能的指导原则。

  Imec解释,在闸极长度低于5nm的情况下,与闸极堆叠有关的2D静电特性所带来的挑战,更甚于2D FET材料直接源极到漏极的穿隧作用。



关键词: 摩尔定律 5nm

评论


相关推荐

技术专区

关闭