通信系统过电压产生的原因与防护
又因uA=L0vta
由此可得
在架空传输线路中若假定为无损导线,则可认为,雷电冲击波(行波)在无损导线中的行进速度与电磁波的传播速度相同(即光速)。如果导线与地之间充填其它介质,例如用绝缘纸、塑料或其它介质充填的电缆等,则雷电冲击波在导线上的传播速度将降低。另外,实际的导线总有分布电阻和对地电容,当发生过电压时还会产生电晕而造成能量损耗,所以行波在传播过程中必然会逐渐衰减和变形,波幅值和波陡度会逐渐减小。
由此,在架空线路的终端串接大电感或并联电容器,可以拉平冲击波的波头,对防雷是有利的,但不解决根本问题。关键是降低冲击波的幅值,把它抑制到规定的数值以下。
(2)感应过电压的防护
过电压产生的同时往往伴随着过电流的产生,因此在实施保护时要从限制过电压和限制过电流两方面考虑:即电压限制和电流限制。
①电压限制:从原理上讲是应用“非线性效应”,使得在正常工作时在带电导体和一个补偿导体(通常是地)之间有一条开路的电路。保护元件起作用后,电荷散逸使得电压衰减。在这个过程中可能短暂地产生强电流,电压限制元件的放电能力必须调整到要释放电流的值。
常见的几种电压限制元件及其工作特性如下:
S过电压放电器/气体放电管:过电压放电器/气体放电管是具有一定气密的玻璃或陶瓷外壳,中间充满稳定的气体,如氖或氩,并保持一定压力。电极表面涂以发射剂以减少电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可保持在一个确定的误差范围内。
当电压升高至放电电压Ua之前,GDT(气体放电管)是一个绝缘体(电阻Riso>100MΩ)。当电压升高到大于放电电压后,过电流大部分泄入大地,产生电弧放电,电压会降低到几乎与电流大小无关的电弧电压(10V~25V)。当电流下降到低于低限值时,放电器会熄灭电弧并恢复其原来的高电阻状态。GDT通常是安装在承受运行电压的线路支线上,因此就有放电器不能熄弧的风险。所以对熄弧性能有一定的要求。GDT的能量吸收能力与其它电压限制装置相比是非常高的。放电特性也受电压上升速度的影响。
这种装置的两电极和三电极型应用于电讯工业中。三电极型专门为成对线路设计,可以理解为带一个公共电弧室的两个组合电极的放电器。这种设计可确保在两个室中同时产生电弧,因而当两条线中同时发生干扰时,可以获得最优的共模干扰抑制。
S变阻器/VDR:变阻器是陶瓷元件,其应用越来越广。例如,将氧化锌(与其它添加剂一起)在一定条件下烧结,电阻就会受电压的强烈影响。这个特性也是其名字(电压变阻器)的由来。电压变阻器(VDR)也叫变阻器。电流(I)随着电压(U)的上升而急剧上升。正式的关系由公式I=aKU表达,其中K是与几何形状有关的元件常数,a是一个非线性指数。
变阻器的典型特性是当处于工作电压时,压敏电阻值极大;在雷电波侵入作用下,它的电阻值甚小,向大地泄放电流。由于电流过大,因此变阻器内部发热量很大。变阻器在远高于其额定电压的情形下运行一般只可能保持很短的一段时间。
S齐纳二极管:双向齐纳二极管具有与变阻器类似的导电特性,对正向和反向电流在电流/电压特性上有一个拐点。非线性指数比变阻器要高,使二极管的“开通”更为急剧,因而可以有效地规定限制电压。
其结构是两个二极管反向串联,可获得对称性。运作于“反向”方式下的二极管PN结阻挡层一般可阻止电流经过。当电场强度超过一定水平时,电子就会脱离其晶格束缚(即齐纳效应),而已经大大加速的带电粒子会从晶格中推出更多的粒子(即雪崩效应)。结果就是阻挡层的“突破”并产生电流。这个“突破”电压称为齐纳电压Uz,电压稳定效应则是由于当电压大于Uz时,很大的电流变化只产生很小的电压变化。齐纳二极管的稳压效应比变阻器要好。
齐纳二极管的能量吸收比变阻器小,因为其阻挡层比变阻器层要薄得多。因此齐纳二极管的负荷承受能力要低得多,由此所出现的过热情况可以部分地用压制成形的金属电极补偿,电极可以散掉热量,但也增加了体积。抑制二极管是一种特别的保护二极管,具有很短的反应时间及很高的尖峰电流负荷承受能力。
S闸流二极管:由于放电电流中伴有很大的电压降,变阻器和二极管必须吸收大量的能量。在保护设备起作用之后,容许把故障电压降低到远低于保护电平的值,甚至低于运行电压,以便减少能量的转换。这种特性类似于放电器的“火花放电”。
在半导体元件中,上述特性可以在闸流二极管中观察到。闸流二极管开始会阻塞,直到达到放电电压时,电压下降至几伏并产生放电电流。当电流下降到最小值时,闸流二极管会重新阻塞,并恢复其原来的断路状态。与GDT一样,在这种情况下,必须满足干扰清除后会安全停止放电的要求。闸流二极管有单向和双向元件。其特点是高尖峰电流和短反应时间,因而特别适用于较高的保护电平(几十伏到几百伏)。
设计相同的齐纳和闸流二极管其限制电压与容许放电电流的关系取决于半导体。这些二极管的结构和尺寸决定了能吸收的功率大小。随着限制电压的提高,齐纳二极管的容许电流呈双曲线下降,然而闸流二极管的容许电流几乎是恒定的。其原因是,在闸流二极管放电以后,电压降几乎与电流大小无关。由此可见,在结构体积相同的情况下,齐纳二极管较适用于低的限制电压,而闸流二极管则适用于高的限制电压,其分界点是50V左右。
S热敏电阻:以上所讨论的元件其功能都是基于纯电压效应。热敏电阻在温度升高时电阻会减少。与任何电阻一样,电流所产生的电能损耗会使热敏电阻升温。升温使电阻下降,电流升高。结果就形成了与稳压元件相似的电流/电压关系。但是只有在反应时间之后,这种效应才会发生。所以保护作用受到元件热惯性的影响。
②限流元件的电流限制特性有两个功能:第一、当超过电流限值时,无条件地切断电路或者加以限制;第二、去耦与/或抑制短暂电压/电流尖峰(大部分情况下与电压限制元件一起使用)。
S电阻:电阻是去耦的最简单方式,一般没有断路的功能。电压尖峰所产生的短暂电流尖峰会在电阻上产生相应的压降,因而减少了干扰的影响。去耦元件常常与电压限制元件一起用于电路中而作为串联的电阻器。
在应用中最大允许串联电阻常常受到很大的限制(限制为几欧)。一方面,要求在工作电流下的电压降低;另一方面,要求在工作电流下保护电阻器不会过载,由于去耦效应与电阻值成比例,所以使用电感器应该有所帮助。
S保险丝:保险丝是传统的电流限制元件,是由导电熔丝构成,置于线路中受保护元件的前边。熔丝具有一定的电阻,熔丝的温度在一定电流下会上升(温度取决于热容量、辐射和散热),直到熔丝熔化,从而实现保护。
S电感:电感(线圈)可对短暂尖峰具有很高的去耦效应,而同时保持很低的直流电阻。但也有一个缺点:其阻抗随频率而变,因而严重损害保护元件的传输性能。
SPTC(正温度系数)电阻器:通常是陶瓷元件,在正常温度下呈现欧姆特性,因此像电阻器一样是去耦元件。温度升高时,初始电阻基本保持不变。当超过一个特定的温度后,电阻急剧上升(上升104倍~106倍),当温度再升高时,电阻的上升又变平缓。温度上升可能由于外部加热也可以由电流产生的内部加热。在内部加热方面,PTC电阻器与保险丝相似,不同的是当故障清除以后,PTC电阻器能自动地接通线路。因此,这种元件可以提供过电流保护而不需要太多的维护。
4结语
以上仅就过电压的产生和保护在原理上进行了分析,在实际工作中过电压的防护是一项重要的工作。防护措施的好坏直接影响设备的安全运行和经济效益以及人身安全。根据不同的设备要采取不同的防护措施,对重要的设备要采取多项措施和多级保护,以确保防护措施的可靠性及安全性,尽量将过电压产生的危害降低到最小。
评论