新闻中心

EEPW首页 > 市场分析 > 碳化硅在新能源汽车中的应用现状与导入路径

碳化硅在新能源汽车中的应用现状与导入路径

作者:陈东坡(北京三安光电有限公司副总经理,北京 100032)时间:2021-10-15来源:电子产品世界收藏
编者按:碳化硅具有高热导率、高击穿场强、高饱和电子漂移速率等特点,可以很好地满足新能源汽车电动化发展趋势,引领和加速了汽车电动化进程,对新能源汽车发展具有重要意义。我国新能源汽车正处于市场导入期到产业成长期过渡的关键阶段,汽车产销量、保有量连续6年居世界首位,在全球产业体系当中占了举足轻重的地位。新能源汽车产业的飞速发展,极大地推动了碳化硅产业发展与技术创新,为碳化硅产品的技术验证和更新迭代提供了大量数据样本。

作者简介:陈东坡,中国科学院电气工程研究所博士,高级工程师,研究领域包括第三代半导体、光伏、新型显示、LED等泛半导体领域,擅长产业与市场研究、技术路线研究、竞争对手分析、企业战略规划、投资价值分析。E-mail: 498542228@qq.com。

本文引用地址:http://www.eepw.com.cn/article/202110/428850.htm

1634282805645981.png

北京三安光电有限公司 副总经理 陈东坡

1   使用优势

1.1 助力提升加速度

的加速性能与动力系统输出的最大功率和最大扭矩密切相关,)技术允许驱动电机在低转速时承受更大输入功率,且不怕电流过大导致的热效应和功率损耗,这就意味着车辆起步时,驱动电机可以输出更大扭矩,强化加速能力。特斯拉发布了全球现阶段最快的量产车型,2.1 s 就可完成0 ~ 100 km 加速,速度超越了布加迪;而比亚迪汉采用 模块后,输出功率可达200 kW,0 ~ 100 km 加速度仅为3.9 s[1-2]。

1.2 助力降低系统成本

虽然 器件成本略高于硅基器件,但采用SiC器件实现了电池成本的大幅下降和续航里程的提升,从而有效降低了整车成本。数据显示,在新能源汽车使用SiC 的(90 ~ 350)kW 驱动逆变器,使用SiC 器件增加的成本为75 ~ 200 美元(1 美元约为人民币6.5 元),然而从电池、无源元器件、冷却系统节省的成本在525 ~ 850 美元,系统性成本显著下降,相同里程条件下,采用SiC 逆变器单车可节省至少200 美元。

1634282905157723.png

图1 新能源汽车中使用SiC产品带来的收益 来源:作者自己整理

1.3 助力新能源汽车增加续航里程

SiC 器件通过导通/ 开关两个维度降低损耗,从而实现增加电动车续航里程的目的。SiC 的禁带宽度(3.3eV)远高于Si(1.1eV),可实现高浓度掺杂,导致漂移区宽度大幅缩短,在SiC MOS 器件导通时,正向压降和导通损耗都小于Si-IGBT;同时,Si-IGBT 通常会集成快恢复二极管(FRD),关断时存在反向恢复电流及拖尾电流,导致其开关速度受到限制,造成较大的关断损耗,而SiC- 属于单极器件,像一个刚性开关,不存在拖尾电流;而且SiC 的载流子迁移率是Si 的3 倍左右,可以提供更快的开关速度,以降低开关损耗。结合英飞凌的研究数据,在25 ℃结温下,SiC MOS 关断损耗大约是Si-IGBT 的20%;在175 ℃的结温下,SiC-MOS 关断损耗仅为Si-IGBT 的10%。

1.4 助力新能源汽车实现轻量化

轻量化是整车厂的不懈追求,由于SiC 材料载流子迁移率高,能提供较高的电流密度,相同功率等级下封装尺寸更小,以IPM 为例,SiC 功率模块体积可缩小至硅功率模块的2/3 ~ 1/3[3]。SiC 能够实现高频开关,减少滤波器和无源器件如变压器、电容、电感等的使用,从而减少系统体系和重量;SiC 禁带宽度宽且具有良好的热导率,可以使器件工作于较高的环境温度中,从而减少散热器体积;同时SiC 可以降低开关与导通损耗,使系统效率提升,同样续航范围内,可以减少电池容量,有助于车辆轻量化。以罗姆公司设计的SiC 逆变器为例,使用全SiC 模组后,主逆变器尺寸降低43%,重量降低6 kg(如图2)。

1634283124382430.png

图2 电机控制器中使用SiC产品带来的收益 来源:罗姆公司

2   应用现状

2.1 相关企业正在加速布局

自从特斯拉推出Model3,首次采用以24 个SiC 为功率模块的逆变器后,这类新型半导体材料越来越受重视,整车厂及Tier 1 积极引入SiC 。据了解,比亚迪、北汽新能源、吉利汽车、上海大众、尼桑在其部分车型中的OBC 和DC-DC 中使用了SiC 器件;比亚迪、特斯拉上海工厂、宇通客车、吉利汽车在电机控制器中使用了SiC 器件;传统车企江淮汽车、红旗、现代、本田、宝马、奥迪以及造车新势力如蔚来、小鹏、理想等企业即将在其主驱逆变器中采用SiC。除此之外,多家零部件供应商也发布了开发、量产SiC 电驱动系统的计划,例如国外的博世、德尔福、采埃孚、法雷奥,国内典型企业包括精进电动、上海电驱动、纬湃科技等(如图3)。

1634283206614690.png

图3 整车厂与tier1 导入SiC情况(部分企业) 来源:自己整理

2.2 市场渗透率目前仍然不高

SiC 芯片在新能源汽车领域的应用前景被业界广泛看好,目前,各汽车整车厂和供应商都开始布局SiC 芯片的研发和产业化。但从市场占有率来看,硅基半导体产品在新能源汽车领域仍是主流,SiC 芯片的应用尚未普及。根据Yole 预测,SiC 电力电子器件2024 年在功率器件渗透率为9%(如图4),SiC 芯片的市场份额短期内很难达到硅基半导体的水平[4],硅基方案和SiC 方案预计将在汽车领域长期共存,来实现传动系统的最佳性价比。

1634283280480545.png

2.3 国产化预期变得更为强烈

车规芯片中有40% 是,单车平均价值在300 美元左右,该类芯片在环境条件、可靠性、耐久性等指标方面均高于工业级和消费级半导体,导致开发时间长、难度大,技术壁垒高,国外厂商占据大部分市场份额,已成为我国汽车产业的“卡脖子”环节,而疫情、连续极端天气则进一步加剧了该类芯片的危机,自2020 年末开始,汽车行业面临芯片断供风险。中国作为世界最大的新能源汽车产销国深受汽车芯片短缺困扰,国内不少车企因此生产受阻,甚至停产减产。据悉,今年以来大众、丰田、本田、通用、沃尔沃等企业都因芯片短缺出现过短暂停产,车规芯片国产化预期变得更为强烈,而国内汽车技术加速向电动化发展,汽车电气化程度逐步加深将导致SiC 量价齐升。

2.4 性价比与可靠性急需提升

SiC 行业发展的瓶颈主要在于SiC MOS 产品的性价比目前比较低。价格方面,由于SiC 衬底生产效率低,成本比硅晶片高出许多,再加上后期外延、芯片制造及器件封装的低成品率,导致SiC 器件价格居高不下,根据行业预测,目前批量化价格仍旧是硅基IGBT 的3~5 倍。产品性能方面,SiC MOS 制造工艺中高质量、低界面态的栅界面调控技术还需加强,批量制造技术与成品率也需进一步提升。同时,SiC MOS 真正落地的时间还非常短,从芯片和功率模块设计到整车层面的应用验证这一链条尚未打通,一些诸如短路耐受时间等技术指标没有得到足够多的验证,而且国产SiC MOS 器件没有装车上路的数据,SiC MOS 在车载领域的稳定性和寿命等指标还需要时间与实践验证。

3   导入路径

3.1 导入领域:从OBC导入过渡到电机控制器

SiC 功率器件主要用于控制器、OBC(车载充电机)和DC-DC 车载电源转换器,其中,用于电机控制器的功率模块是增长空间最大的车用SiC 产品,预计占SiC 芯片市场的50% 左右。从导入时序来看,国外不少公司已在2018 年开始将SiC 肖特基势垒二极管和MOS 管用在OBC 上,SiC 在车载电源领域OBC和DC-DC 中的市场渗透率逐步提升,通过这些场景的应用带动SiC 产品技术成熟与成本下降,然后再渗透到可靠性要求更高的电机控制器,预计到2022 年以后才会出现SiC MOS 管的实质性应用[5-6]

1634283522985027.png

3.2 导入车型:长续航里程电动车最先导入

续航里程提升有助于推动电动车销量增长,新能源汽车企业普遍靠提高电池容量来增加续航里程,但受限于电池技术和成本,新能源汽车企业已很难再通过此方法显著提升续航,而在电机控制器中引入SiC技术成为一种有效路径,这促使SiC 在长续航新能源汽车市场加速渗透。据预测,续航里程大于500 km 的电机控制器中SiC 渗透率到2024 年预计达到100%;续航里程(400 ~ 500)km 的电机控制器预计在2023年开始使用SiC,整体渗透率在40% 左右;续航里程400 km 以下车型的电机控制器将在2025 年以后使用SiC,整体渗透率将小于10%[3](如图6)。

1634283605204055.png

3.3 导入时间:预计到2025年之后才会爆发

随着SiC 产品性价比与可靠性提升,SiC 产品的渗透率稳步提高,国内外部分车企已开始在电机控制器中导入SiC 产品,其中特斯拉推出的Model3,就采用了基于SiC MOSFET的功率控制模块;比亚迪的“汉”也搭载了SiC MOSFET 功率控制模块。目前,几乎所有的新能源汽车企业都把SiC 电机控制器开发列入到新项目开发的时间表中,而应用SiC 模块的车厂会越来越多。从全球市场来看,预估2025 年会成为SiC在新能源汽车市场的一个爆发点,SiC 的供应有可能会进入到全面供不应求的阶段。

1634283679262149.png

3.4 导入产品:从分立器件向全SiC模组过渡

SiC 功率器件包括二极管和晶体管,二极管通常以分立器件形式使用,也可以在混合模组或者全SiC模组中使用;晶体管也是以分立器件或者在全SiC 模组中使用[4]。目前SiC功率器件市场仍由分立器件主导,二极管产品已经产业化,并实现大规模商用,混合模组也已经在一些应用中渗透,分立的晶体管和全SiC 还在进一步研发和积极推广之中,全SiC模组的研发与推广预计将会花费更长的时间,但全SiC 模组的市场会更大(如图8)。

image.png

图8 SiC产类型 来源:Power SiC 2019:Materials,Devices and Applications

参考文献:

[1] 宽禁带半导体开启新能源汽车新篇章[N/OL].中国电子报,[2021-6-28]. https://b a i j i a h a o . b a i d u . c om/s?id=170381625775841.

[2] Yole Développement.Power SiC 2019:Materials,Devices and Applications[R/OL].[2019-7-21].https://www.sohu.com/a/328251230_256868.

[3] 材料深一度.国内新能源汽车应用前景明确,SiC有效产能供给不足[R/OL].[2021-8-

17].http://www.casmita.com/news/202108/17/5716.html.

[4] Yole Développement.Power SiC 2019:Materials,Devices and Applications[R/OL].[2019-9-17].http://www.ncap - c n . c o m /news/report/2019/2156.html.

[5] 小熹.行研|功率之王——[R/ O L ] . 信熹资本,[2019-09-30]. https://mp.weixin.qq.com/s?src=11&timestamp=1632628844&ver=3337&signature=AEuEP2MtGnXopob-4retNUQMe-HjCVrb7XeRM4-p6MomHfOWAPN5YTN21NKx0nxr5xKTCvkZs61J4l6hxqhRynHhuzPoDfV2N5gvSR1pFuXE6ea7MgD38Jr8tx07GYiG&new=1.

[6] 第三代半导体联合创新孵化中心.汽车电气化制胜法宝——(SiC)[R/OL]. 半导体材料与工艺设备,[2021-1-28].https://mp.weixin.qq.com/s?src=11&timestamp=1632628874&ver=3337&signature=0mxm6mzHYjmZbjeUc5MGhNcYE2abEzmAzNxQmdmMJ4iO1ZYIqIChB2SZAx0q5l1PWNODIHAH7k6QyCSGBJ-zilOIH7ZBtUXowbXMjhHHG0Rgfto10lx6moLehuYsZl4n&new=1.

(本文来源于《电子产品世界》杂志2021年10月期)



评论


相关推荐

技术专区

关闭