奈梅亨,2023年11月30日:基础半导体器件领域的高产能生产专家Nexperia今日宣布推出其首款碳化硅(SiC) MOSFET,并发布两款采用3引脚TO-247封装的1200 V分立器件,RDS(on)分别为40 mΩ 和80 mΩ。NSF040120L3A0和NSF080120L3A0是Nexperia SiC MOSFET产品组合中首批发布的产品,随后Nexperia将持续扩大产品阵容,推出多款具有不同RDS(on)的器件,并提供通孔封装和表面贴装封装供选择。这次推出的两款器件可用性高,可满足电动
关键字:
Nexperia SiC MOSFET 工业电源开关
11月,日本三菱电机、安世半导体(Nexperia)宣布,将联合开发高效的碳化硅(SiC)MOSFET分立产品功率半导体。双方将联手开发,将促进SiC宽禁带半导体的能效和性能提升至新高度,同时满足对高效分立式功率半导体快速增长的需求。目前芯片供应量尚未确认,预计最早将于2023年内开始供应。公开消息显示,安世半导体总部位于荷兰,目前是中国闻泰科技的子公司。11月初,安世半导体被迫转手出售其于2021年收购的英国NWF晶圆厂。尽管同属功率半导体公司,三菱电机与安世半导体的侧重点不同,前者以“多个离散元件组合
关键字:
三菱电机 安世 SiC 功率半导体
11 月 21 日消息,据晚点 LatePost 报道,在芯片自研方面,理想同时在研发用于智能驾驶场景的 AI 推理芯片,和用于驱动电机控制器的 SiC 功率芯片。报道称,理想目前正在新加坡组建团队,从事 SiC 功率芯片的研发。在职场应用 LinkedIn 上,已经可以看到理想近期发布的五个新加坡招聘岗位,包括:总经理、SiC 功率模块故障分析 / 物理分析专家、SiC 功率模块设计专家、SiC 功率模块工艺专家和 SiC 功率模块电气设计专家。报道还称,用于智能驾驶的 AI 推理芯片是理想目前的研发重
关键字:
理想 自研芯片 新能源汽车 智能驾驶 AI 推理芯片 驱动电机 控制器 SiC 功率芯片。
RF前端的高功率末级功放已被GaN功率放大器取代。栅极负压偏置使其在设计上有别于其它技术,有时设计具有一定挑战性;但它的性能在许多应用中是独特的。阅读本文,了解Qorvo的电源管理解决方案如何消除GaN的栅极偏置差异。如今,电子工程师明白GaN技术需要栅极负电压工作。这曾经被视为负面的——此处“负面”和“负极”并非双关语——但今天,有一些技术使这种栅极负压操作变得微不足道。今天,我们拥有电源管理集成电路(PMIC)器件,可以轻松可靠地为这些GaN PA通电和断电,以及PMIC所带来更多其他优势。我们将在下
关键字:
Qorvo GaN 功率放大器
当地时间11月13日,冲电气工业株式会社(OKI)与信越化学合作,宣布成功开发出一种技术,该技术使用OKI的CFB(晶体薄膜键合)技术,从信越化学特殊改进的QST(Qromis衬底技术)基板上仅剥离氮化镓(GaN)功能层,并将其粘合到不同材料的基材该技术实现了GaN的垂直导电,有望为可控制大电流的垂直GaN功率器件的制造和商业化做出贡献。两家公司将进一步合作开发垂直GaN功率器件,并与制造这些器件的公司合作,让这些器件能应用到实际生产生活中。GaN功率器件因兼具高频率与低功耗特性而备受关注,尤其在1800
关键字:
GaN 垂直导电 OKI
Nexperia近日宣布与三菱电机公司建立战略合作伙伴关系,共同开发碳化硅(SiC) MOSFET分立产品。Nexperia和三菱电机都是各自行业领域的领军企业,双方联手开发,将促进SiC宽禁带半导体的能效和性能提升至新高度,同时满足对高效分立式功率半导体快速增长的需求。三菱电机的功率半导体产品有助于客户在汽车、家用电器、工业设备和牵引电机等众多领域实现大幅节能。该公司提供的高性能SiC模块产品性能可靠,在业界享有盛誉。日本备受赞誉的高速新干线列车采用了这些模块,并以出色的效率、安全性和可靠性闻名遐迩。N
关键字:
Nexperia 三菱电机 SiC MOSFET
三菱电机将与Nexperia(安世)合力开发SiC芯片,通过SiC功率模块来积累相关技术经验。东京--(美国商业资讯)--三菱电机株式会社(Mitsubishi Electric Corporation,TOKYO: 6503)今天宣布,将与Nexperia B.V.建立战略合作伙伴关系,共同开发面向电力电子市场的碳化硅(SiC)功率半导体。三菱电机将利用其宽带隙半导体技术开发并提供SiC MOSFET芯片,Nexperia将使用这些芯片开发SiC分离器件。电动汽车市场正在全球范围内扩大,并有助于推动Si
关键字:
三菱电机 安世 SiC
11月6日,株式会社电装(Denso)宣布对Coherent的子公司SiC衬底制造商Silicon Carbide LLC注资5亿美元,入股后,电装将获得该公司12.5%的股权。电装本次投资将确保6英寸和8英寸SiC衬底的长期稳定采购。关于本次投资,市场方面早有相关消息传出。今年9月底有报道称,电装、三菱电机等多家企业对投资Coherent的SiC业务感兴趣,并且已经就收购Coherent的SiC业务少数股权进行过讨论。分拆SiC业务能够给投资者提供更多投资机会,同时也是对SiC发展前景的看好,Coher
关键字:
电装 SiC
氮化镓(GaN)是最接近理想的半导体开关的器件,能够以非常高的能效和高功率密度实现电源转换。相比于生成工艺复杂的SiC,GaN的生成工艺相对成熟,可以制作成尺寸小巧的芯片封装,因此非常适合在各种消费级和工业级开关功率应用。当然,相比SiC在高压领域的出色表现,GaN在高压的表现并不突出。因此,作为目前GaN市场占有率最高的Power Integrations(PI)创新地将GaN开关的耐压上限提升到1250V,再次为GaN开关的应用填补了新的耐受电压领域。 PI的PowiGaN已经在超过60个的市场应用中
关键字:
1250V PI PowiGaN GaN
加利福尼亚州戈莱塔 – 2023 年 11 月 7日 -新世代电力系统的未来、氮化镓(GaN)功率半导体的全球领先供应商 Transphorm, Inc.(纳斯达克股票代码:TGAN)近日宣布,推出三款TOLL封装的 SuperGaN® FET,导通电阻分别为35、50和72毫欧。Transphorm的TOLL封装配置采用行业标准,这意味着TOLL封装的SuperGaN功率管可作为任何使用e-mode TOLL方案的直接替代器件。新器件还具备Transphorm经验证的高压动态(开关)导通电阻可
关键字:
Transphorm 氮化镓 GaN
基于氮化镓器件的EPC9194逆变器参考设计显着提高了电机驱动系统的效率、扭矩而同时使得单位重量功率(比功率)增加了一倍以上。该逆变器非常微型,可集成到电机外壳中,从而实现最低的电磁干扰、最高的密度和最輕的重量。 宜普电源转换公司宣布推出三相BLDC电机驱动逆变器参考设计(EPC9194)。它的工作输入电源电压范围为 14V ~60V,可提供高达60 Apk(40 ARMS)的输出电流。此电压范围和功率使该解决方案非常适合用于各种三相BLDC电机驱动器,包括电动自行车、电动滑板车、无人
关键字:
EPC GaN FET 电机驱动器
Cambridge GaN Devices (CGD) 是一家无晶圆厂环保科技半导体公司,开发了一系列高能效 GaN 功率器件,致力于打造更环保的电子器件。CGD 与台湾群光电能科技有限公司(TWSE:6412)和英国剑桥大学技术服务部 (CUTS) 签署了三方协议,共同设计和开发使用 GaN 的先进、高效、高功率密度适配器和数据中心电源产品。群光电能科技是一家成熟的电力电子系统整体解决方案提供商,专注于各种应用的电源和适配器,包括笔记本电脑、台式电脑、游戏设备和服务器/云解决方案。剑桥大学高压微电子和传
关键字:
CGD 群光电能 GaN 生态系统
_____近年来,在国家“双碳”战略指引下,汽车行业油电切换提速,截至2022年新能源汽车渗透率已经超过25%。汽车电动化浪潮中,半导体增量主要来自于功率半导体,根据 Strategy Analytics,功率半导体在汽车半导体中的占比从传统燃油车的21%提升至纯电动车的55%,跃升为占比最大的半导体器件。同其他车用电子零部件一样,车规级功率半导体也须通过AEC-Q100认证规范所涵盖的7大类别41项测试要求。对于传统的硅基半导体器件,业界已经建立了一套成熟有效的测试评估流程。而对于近两年被普遍应用于开发
关键字:
汽车检测认证 泰克 SiC
电池可以用来储存太阳能和风能等可再生能源在高峰时段产生的能量,这样当环境条件不太有利于发电时,就可以利用这些储存的能量。本文回顾了住宅和商用电池储能系统 (BESS) 的拓扑结构,然后介绍了安森美(onsemi) 的EliteSiC 方案,可作为硅MOSFET 或IGBT开关的替代方案,改善 BESS 的性能。BESS的优势最常用的储能方法有四种,分别是电化学储能、化学储能、热储能和机械储能。锂离子电池是家喻户晓的电化学储能系统,具有高功率密度、高效率、外形紧凑、模块化等特点。此外,锂离子电池技术成熟,因
关键字:
202310 碳化硅 SiC 电池储能系统
紧凑型 100 瓦电源的应用范围不断增加,从 AC-DC 充电器和适配器、USB 供电 (PD) 充电器和快速充电(QC) 适配器,到 LED 照明、白色家电、电机驱动、智能仪表和工业系统等。对于这些离线反激式电源的设计者来说,面临的挑战是如何确保稳健性和可靠性,同时继续降低成本,提高效率,缩小外形尺寸以提高功率密度。为了解决其中的许多问题,设计者可以用基于宽带隙 (WBG) 技术的器件 (GaN) 来取代硅 (Si) 功率开关。这样做直接转化为提高电源效率和减少对散热器的需求,从而实现更高的功率密度。然
关键字:
电源效率 氮化镓 GaN 电源转换器设计
gan+sic介绍
您好,目前还没有人创建词条gan+sic!
欢迎您创建该词条,阐述对gan+sic的理解,并与今后在此搜索gan+sic的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473