消费者希望日常携带的各种电子设备能够配备便携、快速和高效的充电器。随着大多数电子产品转向 USB Type-C® 充电器,越来越多的用户希望可以使用紧凑型电源适配器为所有设备充电。在设计现代消费级 USB Type-C 移动充电器、PC 电源和电视电源时,面临的挑战是如何在缩小解决方案尺寸的同时保持甚至提高功率水平。德州仪器的低功耗氮化镓 (GaN) 器件有助于在各种最流行的拓扑中解决这一问题,同时提供散热、尺寸和集成方面的优势。在过去的几十年里,随着 GaN 等宽带隙技术的发展,交流/直流拓扑
关键字:
TI GaN 电源拓扑
2024 年 1 月 11 日 3:00 p.m. JST,日本东京 | 2024 年 1 月 10 日 10:00 p.m. PST 加利福尼亚州戈利塔讯 - 全球半导体解决方案供应商瑞萨电子(以下“瑞萨”,TSE:6723)与全球氮化镓(GaN)功率半导体供应商Transphorm, Inc.(以下“Transphorm”,Nasdaq:TGAN)于今天宣布双方已达成最终协议,根据该协议,瑞萨子公司将以每股5.10美元现金收购Transphorm所有已发行普通股,较Transphorm在2024年1月
关键字:
瑞萨 Transphorm GaN
意法半导体与理想汽车签署碳化硅长期供货协议。
关键字:
SiC
近期,大阪公立大学的研究团队成功利用金刚石为衬底,制作出了氮化镓(GaN)晶体管,其散热性能是使用碳化硅(SiC)衬底制造相同形状晶体管的两倍以上,有望应用于5G通信基站、气象雷达、卫星通信、微波加热、等离子体处理等领域,该研究成果已发表在“Small”杂志上。随着半导体技术不断发展,功率密度和散热等问题日益凸显,业界试图通过新一代材料解决上述问题。据悉,金刚石具备极强的导热性能,氮化镓具有宽带隙和高导电性等特性,居于上述特性,以金刚石为衬底的氮化镓晶体管被寄予厚望。在最新研究中,大阪公立大学的科学家们成
关键字:
GaN 散热能力
尽管电池技术和低功耗电路不断取得进步,但对于许多应用来说,完全不依赖纯电池设计可能是不可行、不适用和无法接受的。医疗系统就属于这类应用。相反,设备通常必须直接通过 AC 线路运行,或至少在电池电量不足时连接 AC 插座即可运行。除了满足基本的 AC/DC 电源性能规范外,医用电源产品还必须符合监管要求,即满足电隔离、额定电压、泄漏电流和保护措施 (MOP) 等不那么明显的性能要求。制定这些标准是为了确保用电设备即使在电源或负载出现故障时,也不会给操作员或病人带来危险。与此同时,医疗电源的设计者必须不断提地
关键字:
DigiKey GaN AC/DC
过去,仿真的基础是行为和具有基本结构的模型。这些模型使用的公式我们在学校都学过,它们主要适用于简单集成电路技术中使用的器件。但是,当涉及到功率器件时,这些简单的模型通常无法预测与为优化器件所做的改变相关的现象。当今大多数功率器件不是横向结构,而是垂直结构,它们使用多个掺杂层来处理大电场。栅极从平面型变为沟槽型,引入了更复杂的结构,如超级结,并极大地改变了MOSFET的行为。基本Spice模型中提供的简单器件结构没有考虑所有这些非线性因素。现在,通过引入物理和可扩展建模技术,安森美(onsemi)使仿真精度
关键字:
功率器件 Spice模型 SiC 仿真
高频临界模式 (CrM) 图腾柱功率因数校正 (PFC) 是一种使用 GaN 设计高密度功率解决方案的简便方法。TIDA-00961 参考设计使用 TI 的 600V GaN 功率级 LMG3410 和 TI 的 Piccolo™高频临界模式 (CrM) 图腾柱功率因数校正 (PFC) 是一种使用 GaN 设计高密度功率解决方案的简便方法。TIDA-00961 参考设计使用 TI 的 600V GaN 功率级 LMG3410 和 TI 的 Piccolo™ F280049 控制器。功率级尺寸 65 x 4
关键字:
TI GaN 图腾柱 PFC TIDA-00961 FAQ
低电感电机有许多不同应用,包括大气隙电机、无槽电机和低泄露感应电机。它们也可被用在使用PCB定子而非绕组定子的新电机类型中。这些电机需要高开关频率(50-100kHz)来维持所需的纹波电流。然而,对于50kHz以上的调制频率使用绝缘栅双极晶体管(IGBT)无法满足这些需求,如果是380V系统,硅MOSFET耐压又不够,这就为宽禁带器件开创了新的机会。在我们的传统印象中,电机驱动系统往往采用IGBT作为开关器件,而SiC MOSFET作为高速器件往往与光伏和电动汽车充电等需要高频变换的应用相关联。但在特定的
关键字:
英飞凌 SiC MOSFET
PC公司的氮化镓专家将在国际消费电子展(CES)上分享氮化镓技术如何增强消费电子产品的功能和性能 增强型氮化镓(eGaN®)FET和IC领域的全球领导者宜普电源转换公司(EPC)将在CES 2024展会展示其卓越的氮化镓技术如何为消费电子产品在功能和性能方面做出贡献 ,包括实现更高效率、更小尺寸和更低成本的解决方案。CES展会期间,EPC的技术专家将于1月9日至12日在套房与客户会面、进行技术交流、讨论氮化镓技术及其应用场景的最新发展。氮化镓技术正在改变大批量消费应用的关键领域包括:推动人工智能
关键字:
宜普电源 CES 2024 氮化镓 GaN
碳化硅作为下一代功率半导体的本命,进入了全面的市场拓展阶段。加上面向再生能源的市场,汽车使用市场的增长比最初的预想早了一年多,功率半导体的投资增长也显示出SiC的一方面。不久前,行业也有研究在300mm的SIC增产的动向。然而,解决SiC容量增强问题现在成为主流。这一趋势不仅限于日本和欧洲的功率半导体制造商。美国和中国之间的摩擦导致了SiC的国产化和量产化,这也是影响SIC的一方面。据电子器件行业报道,2023年9月7日,该公司表示,“中国SiC市场全方位战略已扩大工业化加速进入公司约100家。”中国Si
关键字:
SIC,液晶,半导体
美国加利福尼亚州圣何塞,2023年12月12日讯 – 深耕于中高压逆变器应用门极驱动器技术领域的知名公司Power Integrations(纳斯达克股票代号:POWI)今日推出全新系列的即插即用型门极驱动器,新驱动器适配额定耐压在1700V以内的62mm碳化硅(SiC) MOSFET模块和硅IGBT模块,具有增强的保护功能,可确保安全可靠的工作。SCALE™-2 2SP0230T2x0双通道门极驱动器可在不到2微秒的时间内部署短路保护功能,保护紧凑型SiC MOSFET免受过电流的损坏。新驱动器还具有高
关键字:
Power Integrations 短路保护 SiC IGBT模块 门极驱动器
基础半导体器件领域的高产能生产专家Nexperia今天宣布推出新款GaN FET器件,该器件采用新一代高压GaN HEMT技术和专有铜夹片CCPAK表面贴装封装,为工业和可再生能源应用的设计人员提供更多选择。经过二十多年的辛勤耕耘,Nexperia在提供大规模、高质量的铜夹片SMD封装方面积累了丰富的专业知识,如今成功将这一突破性的封装方案CCPAK应用于级联氮化镓场效应管(GaN FET),Nexperia对此感到非常自豪。GAN039-650NTB是一款33 mΩ(典型值)的氮化镓场效应管,采用CCP
关键字:
Nexperia SMD CCPAK GaN FET
在半导体行业,新的材料技术有“四两拨千斤”的魔力,轻轻松松带来颠覆性变革。具有先天性能优势的宽禁带半导体材料脱颖而出。在整个能源转换链中,宽禁带半导体的节能潜力可为实现长期的全球节能目标作出贡献。宽禁带技术将推动电力电子器件提高效率、提高密度、缩小尺寸、减轻重量、降低总成本,因此将在数据中心、智能楼宇、个人电子设备等应用场景中为能效提升作出贡献。宽禁带材料让应用性能炸裂,怎么做到的?宽禁带材料的优势主要体现在:✦ 与传统的硅基半导体材料相比,宽禁带产品具有更宽更高的禁带宽度、电场强度,更高的击穿
关键字:
GaN 宽禁带 SiC
Efficient Energy Technology GmbH(EET)位于奥地利,是设计和生产创新、用于阳台的小型发电厂的先驱。EET公司选用了宜普电源转换公司(EPC)的增强型氮化镓(eGaN®)功率晶体管(EPC2204), 用于其新型SolMate®绿色太阳能阳台产品。EPC2204在低RDS(on)和低COSS之间实现了最佳折衷,这对于要求严格的硬开关应用至关重要,同时在紧凑的封装中实现100 V的漏-源击穿电压。这种紧凑型设计显着缩小了PCB的尺寸,保持较小的电流环路和最大限度地减少EMI。
关键字:
Efficient Energy Technology EET SolMate EPC 氮化镓器件 GaN
奈梅亨,2023年11月30日:基础半导体器件领域的高产能生产专家Nexperia今日宣布推出其首款碳化硅(SiC) MOSFET,并发布两款采用3引脚TO-247封装的1200 V分立器件,RDS(on)分别为40 mΩ 和80 mΩ。NSF040120L3A0和NSF080120L3A0是Nexperia SiC MOSFET产品组合中首批发布的产品,随后Nexperia将持续扩大产品阵容,推出多款具有不同RDS(on)的器件,并提供通孔封装和表面贴装封装供选择。这次推出的两款器件可用性高,可满足电动
关键字:
Nexperia SiC MOSFET 工业电源开关
gan+sic介绍
您好,目前还没有人创建词条gan+sic!
欢迎您创建该词条,阐述对gan+sic的理解,并与今后在此搜索gan+sic的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473