英特尔杯作品2010年一等奖作品摘要
基于智能视觉技术医用药剂中可见异物自动化检测系统 (一等奖作品)
本文引用地址:https://www.eepw.com.cn/article/133027.htmAutomatic Injection Impurity Detecting System Based on Intelligent visual technology
肖 亮 李俊杰 桑延奇
中南大学 Central South University)
摘要:针对国内人工药品检测低效率、低准确率的不足,按照国家行业标准设计了一套基于智能机器视觉的可见异物自动化检测系统。该系统主要包括机械传动模块、电气控制模块和图像识别与处理模块。根据异物运动连续性和噪声运动无序性等特点,作品使用改进的二次差分算法从图像中提取运动杂质,然后采用基于SIFT特征的MeanShift算法对杂质进行跟踪,最后检测出杂质情况,并由此判断产品质量是否合格。测试表明,系统的检测分辨率达40μm,准确率达90%以上,满足企业要求,基本能替代人工检测。
关键词:机器视觉,可见异物检测,序列图像二次差分,异物跟踪
Abstract:According to the national standards of production,our team designs an automatic impurity detecting system based on intelligent visual technology to address the low efficiency and low accuracy of domestic manual detection. The system mainly includes mechanical transmission module,electrical control system module and image processing module. According to the feature-continuity of impurities movement and discontinuity of noise movement,we propose an improved second-difference algorithm in order to extract movement impurities,then use the SIFT features and MeanShift algorithm to track impurities,finally detect the extracted impurities,and find out whether the product is qualified. Experimental results show that the system can detect impurity whose diameter is above 40 microns,and the system accuracy rate can reach 90%. It meets the requirements of most enterprise,and in most cases can replace the original manual testing.
Keywords:Machine vision,Visible impurity inspection,Image sequences second-difference,Impurity tracking
全国大学生电子设计竞赛组委会
2011年11月9日
linux操作系统文章专题:linux操作系统详解(linux不再难懂)
评论