浅谈埋嵌元件PCB的技术(二)
6.3 热变形解析
本文引用地址:https://www.eepw.com.cn/article/248538.htm为了考察基材的厚度或者线路导体图形给予元件嵌入PCB的热变形行为的影响,利用模拟迄今获得的试验结果进行解析。根据前节叙述的EPADS TV的Geber数据制成三D模型(Model),通过解析从室温加热到260 ℃时的热变形行为而求得。解析时使用ADINA8.6(美国ADINA公司制造)进行非线性的弹性解析。解析以TV-1′为标准。基材厚度为0.1 mm和0.3 mm两种,PCB的导体设定为铜(Cu)中间图形和网目图形两种,实施共计组合成四种的解析。制成的模型如下。
(a)模型1 芯材0.1 mm厚/网目图形。
(b)模型2 芯材0.1 mm厚/中间图形。
(c)模型3 芯材0.3 mm厚/网目图形。
(d)模型4 芯材0.3 mm厚/中间图形。
另外嵌入的芯片为0.1 mm,厚度10 mm□,与TV同样的周边配置金(Au)凸块和下面填充底胶树脂的构造。实际的制造状况有所不同,在解析中室温下的应力和变形设定为0,求出加热到260 ℃时的热变行为。图13表示了热变形解析结果的一例。途中的PCB L1表示上面的,裸芯片嵌入部分的中心部表现出凸形状变形的倾向。它的周围收到裸芯部嵌入部变形的影响。变形行为随着部位而有所不同,这是由于导体图形的形状和疏密的影响所致。解析的四种模型中。模型2相当于TV-1发生起泡的构造。
解析所获得的热变形量以模型2为最大,表现出与实际基板同样的倾向。模型2的变形量为108 mm,其它模型的变形量范围为46 mm ~ 60 mm.

6.4 与热变形实测的比较
为了验证热变形解析的准确性,进行了热变形行为的实测。样品制造成TV-1′,构造相当热变形解析的模型1~模型4供给试验。根据莫瑞光影法(Shadow Moire)的非接触翘曲测量一边加热到最高260 ℃一边进行测量。图14表示了室温初始状态下翘曲分布图。与解析结果相反,由于L4侧具有凸状翘曲,所以在上面配置PCB L4.由于这种翘曲方向对应于图11中表示的起泡以后芯片翘曲方向,所以芯片在嵌入时和安装时表现出不同的翘曲。

从室温初始状态到260 ℃一边升温一边进行数点的测量,确认了室温初始状态时翘曲小的倾向,即L1侧表现出翘曲行为,这一点与模拟的倾向一致。以室温初始状态的翘曲量为基准求出L1测变位量,表1表示了它与模拟结果的比较结果。厚度0.1 mm的构造中实测结果大大超出模拟结果的变形量。特别是模型2中呈现出很大剥离,虽然外观没有确认,但是也有可能发生微细的层间剥离。然而厚度0.3 mm的构造中,实测结果与模拟结果比较一致,表明元件嵌入PCB的热变形预测是有效的。0.1 mm厚度的构造中两者的剥离点今后还有研究的余地,可以采用弹性解析预测热变形行为,在工业上比较有用,期待着有助于元件嵌。

评论