N2 Purge在LPCVD炉管氮化硅工艺中的应用
解决LPCVD氮化硅particle问题的方案
根据以上的分析结果,采用了如下的解决方案:选择石英材质的反应腔体,利用氮化硅薄膜在石英上面相对稳定的剥落情况,在每次生产过程中都利用N2 purge来带走腔体上剥落的氮化硅薄膜。这样既降低了下一次生产过程中particle增加的几率,又减少了反应腔壁上淀积薄膜的厚度。
淀积薄膜厚度的减少势必再次减少氮化硅薄膜剥落的几率,从而使机台可以长期保持在稳定且较低的particle水准。如图7反应腔的温度和压力曲线所示:当晶舟从反应腔内卸载之后,逐渐降低反应腔的温度。利用真空管路的SSV和SV阀(图1所示),用真空泵将反应腔内抽至低压状态。然后开启机台的N2直到反应腔体压力回升到高压状态。关闭N2使反应腔体压力再次降低到低压状态。重复开关机台的N2,使压力反应腔的压力在低压状态和高压状态之间反复波动5次。整个purge过程中由于反应腔内压力的高低变化,并且一直处于降温状况下,所以反应腔体上附着的不是很牢的氮化硅薄膜就会被N2吹下来,并通过真空管路带走。这样就有效地清理了反应腔体,减少了内壁上的薄膜厚度,从而降低了下一次生产时的particle。
根据如上所列举的改造和优化,成功地解决氮化硅LPCVD炉管的particle 问题。机台的particle被成功的控制在13颗左右,而且机台的维护周期可以从24μm(薄膜累计沉积厚度)扩展到32μm。图8和9显示了同一台机台在使用N2 purge功能前后的particle defect的情况。我们可以看出在使用N2 purge的方案之后,氮化硅机台的particle情况有了很大的改观。
结论
利用N2 purge对石英壁上氮化硅薄膜有效清除的现象,合理利用机台生产的间歇期,通过N2来带走可能在未来生产过程中剥落下来的氮化硅薄膜,成功地解决了氮化硅生产中的particle问题。实际生产中的结果显示,particle总数成功地从20.38颗降低至13.19颗,机台的维护周期从24μm延长至32μm。该方案既提高了机台的性能,又成功地降低了机台的生产成本。
评论