无人车的芯片大战,英特尔/英伟达/地平线/寒武纪谁能脱颖而出
AI芯片新势力
本文引用地址:https://www.eepw.com.cn/article/201804/377891.htm2017年12月,特斯拉CEO埃隆-马斯克在NIPS大会宣布,特斯拉正在制造AI芯片,将主要用于完成无人驾驶时的运算操作。此外,无人车AI芯片领域还涌入了一些年轻玩家,如地平线、NovuMind(中文名异构智能)、寒武纪和眼擎科技等。
特斯拉:
2016年7月,Mobileye宣布与特斯拉终止合作关系,2017年12月特斯拉Autopilot负责人Jim Keller在神经信息处理系统大会上表示,特斯拉非常重视AI,无论软件还是硬件层面。特斯拉正在开发定制的AI芯片硬件。
据悉,特斯拉这个AI芯片并非完全独立开发,而是构建在美国AMD半导体公司的知识产权基础上,其代工方格罗方德也是一家从AMD拆分出来的晶圆厂。
地平线:
2017年12 月 ,地平线发布了两款嵌入式人工智能视觉处理器。其中一款征程系列嵌入式AI芯片面向自动驾驶,具备同时对行人、车辆、交通标志牌等多类目标进行检测与识别处理的能力。目前,地平线正在与奥迪、重庆长安和零部件厂商Robert Bosch合作。
NovuMind:
相较于英伟达的绘图处理器 (GPU),NovuMind 专注于开发更有效进行推理的深度学习加速器芯片。NovuMind 开发的 AI 芯片致力于让小型的本地终端设备具有识别和思考的能力。由于 NovuMind 的 AI 芯片具有高达每秒 15 万亿次操作的能力,可以运用在无人车领域。
寒武纪:
2017年11 月 6 日,全球 AI 芯片领域的第一家独角兽创业公司寒武纪召开了发布会,会上介绍了其开发的面向智能驾驶领域的 1M。据寒武纪科技创始人兼CEO陈天石在大会上介绍,这款产品目前正在规划当中,它的性能将达到寒武纪1A的10倍以上,高度集成,具有更高的性能功耗比。目标是让中国的汽车全部都用上国产智能处理器。
眼擎科技:
今年3月,眼擎科技CEO朱继志就人工智能最大应用方向——机器视觉在前端成像上的痛点,分享了眼擎科技的解决方案,并分析了其在自动驾驶领域的应用。眼擎科技力图用芯片+算法的方式提高机器视觉前端的成像能力,让AI有更高质量的图像数据可用,让芯片更好的运用于工业无人车等方向。
由此可见,无人车领域AI芯片的竞争十分激烈,而为推动芯片产业的发展,我国政府也出台了一些政策。据彭博社报道称,中国政府已经设立相应基金,来投资本土芯片厂商。政府预计,到2020年,中国的整车和芯片、传感器等零部件产值将超过1000亿元。
无人车AI芯片面临的困境
AI芯片成为了无人车领域的一个重要战场,各路玩家都想打造自己的AI芯片,在研发无人车AI芯片时,它们主要面临GPU耗能高成本高、开发成本高且回报周期长、AI芯片的周边能力尚且不足等问题,且开发出的AI芯片进入汽车市场必须通过严格的车规,这些难题阻碍着各大厂商的发展进程。
1、GPU耗能高成本高
目前主流的自动驾驶芯片解决方案主要包括GPU、FPGA、DSP和ASIC四种。GPU虽然具有强大的计算能力,但是耗能高、成本高以及体积庞大,无法满足嵌入式的要求。
以GPU起家的英伟达,相比初创公司虽然占据一定优势,但是在人工智能技术发展的道路上也面临巨大挑战。GPU一旦进入量产阶段,考虑到性能、功耗以及产品的技术竞争壁垒,可能不太合适。
初创公司地平线公司为了解决这一问题,一开始搭建自动驾驶平台的时候就与英特尔合作,采用了英特尔的FPGA来作为核心计算单元,满足了自动驾驶对计算性能、延时和功耗的要求。
2、AI芯片需通过车规和检测
AI芯片要进入汽车市场必须通过车规,要经过严格的检测,能够抗电磁干扰、抗震动和适应极大的工作温差等,这对AI芯片生产商来说是一大挑战。
3、开发成本高且回报周期长
芯片研发动辄3、5年的长周期加上漫长的车型研发,使得一款AI芯片从开发到最终应用的时间会无比漫长。开发的过程需要消耗大量的人力物力,而且回报周期长。
今年1月,英伟达发布的无人车AI超级计算芯片DRIVE Xavier耗资巨大。为了研发DRIVE Xavier,英伟达投入了2000个工程师,历时四年,研发费用达到20亿美元。
英伟达这种行业巨头可以承担如此高昂的费用,但是对初创公司来说,这是一大难题。地平线创始人余凯也曾表示,做AI芯片这件事门槛很高。
4、AI芯片的周边能力尚且不足
目前,车内使用的很成熟的DSP芯片,就有丰富的接口,但现在AI芯片还只是一个stand alone的芯片,没有周边生态的支持。
总的来说,无人车AI芯片的研发绝不是一蹴而就的,并且要将芯片行业和汽车行业这两个复杂的行业相结合,需要克服很多难题。
虽然AI芯片的发展面临很多困境,但是AI芯片这一新兴技术为巨头带来了业务扩展的风口,也为创业公司、传统厂商带来了新的机遇。当前各公司都在加快布局,未来可能还会不断涌入新玩家,无人车AI芯片行业的竞争势必将愈加激烈。
评论