新闻中心

EEPW首页 > EDA/PCB > 集成电路封装高密度化与散热问题

集成电路封装高密度化与散热问题

——
作者:曾理,陈文媛,谢诗文,杨邦朝时间:2006-11-29来源:收藏
 
曾理,陈文媛,谢诗文,杨邦朝 
(电子科技大学微电子与固体电子学院 成都 610054) 

1 引言

数字化及网络资讯化的发展,对微电子器件性能和速度的需求越来越高,高阶电子系统产品,如服务器及工作站,强调运算速度和稳定性,而PC机和笔记本电脑对速度及功能需求也不断提高,同时,个人电子产品,如便携式多媒体装置、数字影像装置以及个人数字处理器(PDA)等的显著需求,使得对具有多功能轻便型及高性能电子器件的技术需求越来越迫切。此外,半导体技术已进入纳米量级,可在IC芯片上制造更多的晶体管,也使得摩尔定律能继续维持,基于轻便而需整合功能的需求,IC设计技术上,目前也朝着系统单芯片(SOC)方向发展。

另一方面,从IC技术的发展来看,也朝向精密及微型化发展,由早期的插入式到表面贴装的高密度、封装体与印制电路板的连结由侧面的形式逐渐发展成为面阵列形式,芯片与封装的连结也由丝悍形式发展为面阵列形式的倒装芯片封装,而IC封装也朝向SIP发展,然而,在此发展趋势中,最大的障碍之一来自于热。热主要是由IC中晶体管等有源器件运算时所产生的,随着芯片中晶体管的数目越来越多,发热量也越来越大,在芯片面积不随之大幅增加的情况下,器件发热密度越来越高,过热问题已成为目前制约电子器件技术发展的瓶颈,以CPU为例,其发热量随着速度的提高而逐渐增加,目前已达115W以上,相对的发热密度也大幅度增加。

为顺应热的挑战,CPU的封装形式也在不断变化,以寻求更佳的散热形式,而散热模块所采用的强制空气冷却器也不断改进设计提高性能,然而由于发射量的不断提高,与之相匹配的散热技术却未及时赶上,使得CPU的发展逐渐面临重大的瓶颈,终于促使Intel等公司不得不从设计上转变或牺牲某些附加功能而非一味追求运算频率的提高,另一方面,即使是存储模块也逐渐面临热的问题,根据ITRS预估:2006年每只DRAM的发热量将从1W左右增加到2W,为了扩大存储模块容量,目前许多公司开始采用3D堆叠形式的封装,虽然提高了芯片的应用效率,但也使热的问题越来越显著,据统计,由热所引起的失效约占电子器件失效的一半以上。温度过高除了会造成半导体器件的损毁,也会造成电子器件可靠性降低及性能下降,对于热问题的解决,必须寻求由封装级、PCB级到系统级的综合解决技术方案。由于封装级进行散热设计,不但效果最显著而且成本也最少,因此,封装级的散热设计更显得非常重要。

2 SIP发展及其散热问题

SIP技术是目前IC封装发展的必然趋势,SIP和SOC的概念不同,SOC是以IC前端制造技术为基础。而SIP则是以IC后段制造技术为基础,SOC又称系统单芯片、具有功耗小、性能高及体积小等优点,系统单芯片在集成不同功能芯片时,芯片制造上尚面临着一些有待克服的问题,其技术发展目前尚不完全成熟,产业的投入风险较高,因此产生了SIP的概念,目前对SIP的定义仍有许多不同的说法,SIP的广义定义是:将具有全部或大部分电子功能,可能是一系统或子系统也可能是组件,封装在同一封装体内,如图1所示,在本质上,系统级封装不仅是单芯片或多芯片的封装,同时可含有电容、电阻等无源器件,电子连接器、传感器、天线、电池等各种元件,他强调功能的完整性,具有更高的应用导向性。

目前,SIP的形式可说是千变万化,就芯片的排列方式而言,SIP可能是2D平面或是利用3D堆叠,如图2(a)所示,或是多芯片封装以有效缩减封装面积,如图2(b)所示;或是前述两者的各种组合,如图2(c)所示,和多芯片模组封装的定义不大相同,其内部结合技术可以是单纯的丝线接合,也可使用倒装芯片接合,也可以两者混用,甚至还有用TAB或其他的芯片级内部连接,或是上述方式的混合,更广义的SIP还包含了内埋置无源器件或有源器件的功能性基板结构,以及包含光电器件集成为一体的设计等。 

 
 

   
 

由SIP结构所产生的散热问题大致有以下几点:

1)芯片堆叠后发热量将增加,但散热面积并未相对增加,因此发热密度大副提高;

2)多芯片封装虽然仍保有原散热面积,但由于热源的相互连接,热耦合增强,从而造成更为严重的热问题;

3)内埋置基板中的无源器件也有一定的发热问题,由于有机基板或陶瓷基板散热不良,也会产生严重的热问题;

4)由于封装体积缩小,组装密度增加,使得散热不易解决,因此需要更高效率的散热设计。

评估IC封装热传导问题时,一般采用热阻的概念,由芯片表面到环境的热阻定义如下: 

 


其中Tj是芯片界面温度,Ta是环境温度,P是发热量。

热阻大表示器件传热阻抗大,热传困难,因此较容易产生热的问题,热阻小的表示器件传热较容易,因此散热问题较小,除了几个不同热阻值的定义之外,还有热传特性参数等定义,了解不同热阻的定义及用途,对于电子热传设计非常重要,不同热阻组成的热阻网络,可分析器件热传特性。

分析SIP封装时,两类重要的结构特性分别是3D堆叠芯片封装及多芯片封装,对散热都有显著的影响,在传热分析上和单芯片封装的概念是相同的,都可以用热阻网络来解析,3D芯片堆叠封装或多芯片封装则较为复杂。以散热路径来看,封装中芯片产生的热主要分成向上和向下两部分,向上部分的热会透过封装上表面传递到环境空间,向下的热则是透过PCB或陶瓷基板传递到环境空间。在自然对流条件下可假设封装产生的热大部分都往下传,因此向上的热阻路径可以忽略,对于3D芯片堆叠而言,热源是以串联方式增加,因此器件发热密度相应增如,图3(a)所示,而多芯片封装则有不同的热阻网络架构,并联的热源使发热密度大幅度增加,如图3(b)所示,分析结果显示,对相同发热量的芯片而言,堆叠芯片封装中越下方的芯片越低,而多芯片封装中相同尺寸的芯片温度会比较接近。

对于SIP封装而言,若要从内部传出热量,必须缩短传热路径或减少路径中的热阻。这可通过由改变布局设计或是封装结构实现,也可由增加材料热传性能来实现,另外则可由外加均热片或散热片来降低热源的集中,以图4的例子而言,当环境对流明显时,可把产生最热的芯片放置在最外面的内插板上来增加和空气接触的面积,或者通过提高内插板的热传导系数,甚至使用较薄的内插板和芯片,可以降低热阻和增强封装结构热的性能,此外也可使用散热通道来降低芯片表面到空气的热阻。  


  
  
 

 

对于SIP热传而言,如果使用有机材质的基板,则其热传导性很低,因此热阻很大,基板的散热设计就显得相对重要,可通过增加铜箔层或是散热通孔来增强效果。对于SIP的热传问题,目前的相关研究并不多,例如图5是Amkor公司开发的利用两个芯片SIP的封装技术的DC-DC变换器的结构,在散热设计上利用陷入阵列(Land Grid Array;LGA)的封装结构。在热通孔里镀上铜(Cu)以加强基底的热传散热效果,进而得到较高的热性能,由图6的ANYSY热传分析解决显示,其较高温度的地方出现在两个芯片所在的地方,由于采用了合理的散热设计,使得发热问题得到很大的改善。 


  
  
 

 

图7(a)及图7(b)所示的分别是Toshiba公司同样对并列芯片和堆叠两芯片的SIP结构所做的热分析结果,由图中看出,其在自然对流空气中,并列芯片的SIP温度分布比堆叠的SIP有较显著的均匀温度分布,而堆叠的SIP其高温温度值较集中在芯片的附近,越远离芯片处则温度越低,然而就芯片周期的温度分布强调来看,堆叠的SIP所造成的高温强度相对强很多。 

3 存储器封装的发展趋势及散热问题

目前的DIMM封装量产形式仍是以DIP、SOP/TSOP、QFP/TQFP等传统封装结构为主,往SDRAM及大多数DDR SDRAM均采用TSOP II封装,但随着DDR SDRAM的时钟频率的提高,且为满足产品轻、薄、短、小与系统整合的需求,各种样式的封装结构不断推陈出新,逐渐开始采用了CSP标准的封装,如μBGA、Tiny BGA、Window BGA、圆片级封装(Wafer Level Chip Scale Package,WLCSP)和FPGA等,而为了增加组装密度,各式的3D堆叠式封装也渐渐受到重视,目前应用最多的除了PC机NB的存储模块之外,许多应用在便携式装置上的封装形式已开始采用芯片堆叠的形式,从发热量来看,闪存及SRAM的发热量很小,散热问题不大,但是在高速的DIMM模块中,目前发热量为0.5W/Package,随着时间的推移,到DDR II规格时的发热量会高达1.0W/Package以上,热传导所造成的问题将逐渐被凸现出来,由于存储器模块体积有限,因此散热设计相对较为困难,加上系统内部风流场常受其他装置阻挡破坏,因此如何利用封装自身的结构的特性来提高散热能力,将直接决定存储模块性能的优劣。

目前新一代的存储器封装开始采用Windows BGA的形式,与一般TSOP封装的体积相比足足小了约50%,因此在相同面积的SO-DIMM PCB板上,可多放置一倍的存储器芯片数,进而增加一倍的存储容量,而Windows BGA在电性上也有相当的优势,此外,如图8所示其内部接线也较短。 

 


WLCSP圆片级芯片封装方式的最大特点是能有效缩小封装体积,如图9所示,WLCSP封装除了电性优异外,相较于FBGA与TSOP封装,WLCSP少了介于芯片与环境的传统密封塑料或陶瓷衬底,同时也少了介于芯片与PCB间的基板,因此IC芯片运算时的热量能更有效地散逸,而不致增加封装体的温度,而此特点对于散热问题帮助极大,也因此WLCSP的热阻值,无论是Rja、Rjb或Rjc,都较其他形式封装体小,如图10所示。 

 


一些存储器封装目前也开始朝芯片堆叠或是封装堆叠的形式发展,并可有效地整合不同功能的芯片于同一封装体中,从而大幅度减少了电子组装的尺寸与体积,更能达到SIP的功能,此外,若采用散热锡球、散热通孔及外露铜箔层的综合散热设计,则可使3D堆叠封装的散热效能大幅度改善。 


 


3D堆叠封装结构的热分析如图11所示,分别为单层、双层堆叠及三层堆叠的芯片封装与自然对流状态下的热流模拟,其发热功率设定为1W/Package,图11(a)为一般的单层封装,图11(b)及图11(c)则是双层及三层堆叠形式在自然对流状态下的温度场分布,由分析结果发现,堆叠式封装体的芯片堆叠数越多,热传问题越严重,堆叠封装中下层的芯片可由锡球传导将热向下传递到基板,而上方芯片由于自然对流散热效果较差,造成表面温度较高。

4 CPU封装的发展趋势及散热问题

由CPU封装的发展角度来看散热问题是最明显的例子,以Intel的CPU为例,由早期8086的陶瓷DIP封装,到486及Pentium的PGA封装,在功能整合的要求下,双槽陶瓷PGA发展成为Pentium Pro CPU的设计核心,而Pentium2的OLGA卡式模组的设计虽然使功能提高,但也加大了封装的体积,随着IC向高密度集成及高密度封装发展,目前所有的CPU都已不采用线焊形式的芯片连结方式以及陶瓷封装形式,取而代之的是有机基板封装及倒装芯片形式的芯片连结方式,这使得I/O脚数更多,电性功能更强,体积更小,成本也更低。

然而,当I/O数持续增加使焊球焊点数需激增至数千个时,FC及底胶技术将面临严峻挑战,如Underfill内的空孔,密集的Bump-to-die连续时所需处理得Signal、Power、Ground层间连接问题,低介电常数材料的低热传导性等。因此,2001年十月Intel披露其正在发展新一代的封装技术--无焊内建层技术封装BBUL来替代FC技术,如图12(a)所示,图12(b)则为BBUL的横剖面结构示意图,相对于目前的FC-BGA而言,BBUL技术并不需通过锡球焊点(Solder Bump)的生成而直接嵌入BT基板中,与FC相比较,由于3μm厚铜垫取代了FC封装中的90μm Bump的高度,因此整体高度约可缩减至FC的一半;约0.9mm,而这也自然缩短了传统FC透过Underfill及soledr Bump的传热路径,此外,由于布线长度更短,因此可以直接在表面基层进行布线处理。由于不采用Underfill,因此也避免了Underfill内部的空孔问题。对此技术评估认为可以将CPU上的寄生电感降低至少30%,处理器的功耗也因此可降低至少25%,此外,另一优点在于可内置多个芯片在相同的BBUL封装体中,如将CPU与Chipser同时埋入相同的封装体内,在热性能方面,BBUL结构与传统的FC-BGA差异不大,透过数值软件的模拟比较,发现其在散热上只比FC-BGA差约2.5%,主要是因为FC-BGA扩散热的能力较BBUL的增层扩散热量好。BBUL技术的开发成功将可使现今的时钟频率提高数倍,按照Intel的评估,应用BBUL封装技术后在未来几年内将设计出操作频率超过20G赫兹的CPU产品。 

 


从散热角度分析,由于CPU发热密度大,因此在设计上散热问题一直占有很重要的地位,从早期的陶瓷封装到目前的FC-BGA封装,散热问题一直起着很重要的作用,在传统的FC-BGA封装中,芯片上方结构未加任何散热装置时,热量的传递主要透过衬底及锡球焊点,占了大约80%-90%,如图13(a)所示,然而,一旦附加辅助的散热结构(Heat Spreader、Heat Sink、Fan等)后,如图13(b),则整个散热途径改变,转变成80%-90%通过封装上表面散逸出去。由于CPU的高发热量和封装器件散热途径的改变,使得散热设计的重心也随之向封装上边的路径转移,并采用强制对流空冷的散热模组设计,因此散热的设计就集中在从芯片到外壳及外壳到环境两个方面,以下介绍这两方面的散热解决策略。

从芯片到外壳封装是散热设计中最重要的部分,但是由于受限于封装结构及尺寸,因此目前散热设计的重点是如何将芯片的发热均匀化,而高传导性的均热片或是热管等器件就得到重用,最新技术的开发是微型平板热管4的引入,由于在原理是利用二相流特性,传导性比铜等金属要高,其发展前景很受重视,另一个重要的应用则是利用固态的微热量器件做热点的散热。

在封装外壳到环境的部分,则需考虑如何有效地将热带走,传统气冷的散热片加风扇的设计在热密度有限的状况下已逐渐发展到极限,目前除了整合热管或是利用高传导材料以增加气冷效率之外,许多更高效率的散热方式也开始研发,例如单相的液冷或喷流冷却等。此外,针对CPU的散热问题,目前在芯片上也设计了温度传感器以监控温度变化,对于风扇风速也可分段控制,以达成最佳化的热管理。 

 


5 结论与展望

由于IC的运算速度越来越高以及功能越来越强,封装技术的发展也十分迅速,而散热问题也越来越受到重视,尤其是当封装向SIP发展时,散热问题成为备受关注的研究热点,最有效的电子器件散热解决方案是从封装级开始着手,分析传热路径对器件热阻的影响,并借助封装架构设计及新材料开发来进行散热设计。

展望未来,IC封装中的热传导技术仍具有重要的地位,散热设计的优劣直接关系到芯片的性能与可靠性。如Intel在其技术论坛中提及,由于线宽进入纳米尺度时其漏电流与散热问题迟迟无法获得一个妥善的解决方案,因此暂时放弃开发更高主频率的CPU,而转向发展双核心甚至多核心CPU。即使如此,散热问题也只是暂时得到缓解,单个CPU的发热量仍然会持续增加,散热面临的挑战会更大。

最后,除了封装级的散热设计之外,开发高性能且低成本的散热器件的需求也非常迫切,惟有将两者一起进行综合设计,才能产生最佳化的IC器件散热解决方案。 
 

电路相关文章:电路分析基础


dc相关文章:dc是什么


pic相关文章:pic是什么




评论


相关推荐

技术专区

关闭