新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 基于快速傅里叶IP核的数字脉压处理器的实现

基于快速傅里叶IP核的数字脉压处理器的实现

作者:时间:2012-10-15来源:网络收藏

引言

脉冲压缩体制在现代雷达中被广泛采用,通过发射宽脉冲来提高发射的平均功率,保证足够的作用距离;接收时则采用相应的脉冲压缩算法获得脉宽较窄的脉冲,以提高距离分辨力,从而能够很好地解决作用距离和距离分辨力之间的矛盾问题。

线性调频(LFM)信号通过在宽脉冲内附加载波线性调制以扩展信号带宽,从而获得较大的压缩比。所需匹配滤波器对回波信号的多普勒频移不敏感,因此LMF信号在日前许多雷达系统中仍在广泛使用。

本文基于可复用和重配置的特点,实现一种频域的FPGA脉压,能够完成正交输入的可变点LFM信号脉冲压缩,具有设计灵活,调试方便,可扩展性强的特点。

1 系统功能硬件实现方法

该系统为某宽带雷达系统的数据采集和脉冲压缩部分。系统要求在1个脉冲重复周期(PRT)内完成距离通道的数据采集及1 024点的脉冲压缩,并在当前PRT将脉压结果传送至DSP,其硬件结构如图1所示。

数据采集系统主要包括前端的运算放大器和模/数转换器。运算放大器选用ADI公司的AD8138,将输入信号由单端转换为差分形式以满足ADC的输入需求,并且消除共模噪声的影响。模/数转换器选用TI公司的ADS5500,具有14 b的分辨率和125 MSPS的最高采样率,用来对输入LFM信号进行60 MHz的高速采样。

本文引用地址:http://www.eepw.com.cn/article/185667.htm

数字脉冲压缩模块在FPGA中实现,FPGA选用Xilinx公司的XQ2V1000芯片。在对输入采样数据进行脉冲压缩后,结果存储于FPGA片内的双口RAM中,并向DSP发送中断信号。DSP在接收到中断信号后读取RAM中的脉压数据进行主处理。

2 脉冲压缩模块的设计和实现


2.1 脉冲压缩原理

数字脉冲压缩技术是匹配滤波和相关接收理论的实际应用,频域的匹配滤波等效于时域的相关接收。基于匹配滤波理论实现数字脉冲压缩的原理如图2所示。

图2中θ(f)为发射信号的非线性相位谱,接收的回波信号在经过匹配滤波后,非线性相位谱得到校正。输出的窄脉冲为:

匹配滤波器有一个重要的特性:对波形相同而幅度和时延不同的信号具有适应性。也就是说,与信号s(t)匹配的滤波器,对信号as(t-τ)也是匹配的。回波信号s(t)在波门中的位置反映在脉压结果峰值出现的位置,这也是利用雷达脉冲进行测距的主要依据。

2.2 脉冲压缩原理

脉冲压缩模块包括FFT、与IFFT单元、复数乘法单元以及存储单元,其结构框图如图3所示。其中,FFT和IFFT单元是通过复用Xilinx公司提供的变换来实现的,而硬件乘法器则为复乘提供了解决途径。

采样数据首先存入FIFO中进行全局缓存,然后FFT单元从FIFO中读取采样数据,紧接着进行FFT运算,结果在流水输出时直接与匹配滤波器系数相乘,并将运算结果写入块RAMl中,最后IFFT单元从块RAMl中读取复乘后的数据进行IFFT(复用FFT运算)运算,结果写入块RAMl后发送中断信号,等待DSP读取。

2.2.1 FFT处理单元的硬件复用

在系统中FFT处理单元通过使用软核Fast Fourier Transform. v3.O来实现的。该IP核提供3种结构选择。

(1)管线级,数据流水I/0。这种结构将若干基-2蝶形单元级联起来,使得数据的输入、计算、输出可以流水进行,从而可以达到很高的处理速度,但资源消耗较大;

(2)基-2,最少资源消耗。这种结构采用单个基-2蝶形单元对输入数据进行变换,运算消耗的时间较长;

(3)基-4,突发I/O;这种结构采用单个基-4蝶形单元对输入数据进行变换,并利用块RAM来存储旋转因子,占用系统资源较少,在1个PRT内可以完成脉压结果的输出,从而在资源和速度这两者之间达到很好的平衡,也是设计中实际采用的结构。

FFT处理单元主要包括2个过程:数据I/O和运算过程,但两者不是流水执行的。FFT启动信号有效后,数据开始进行装载,装载完成后开始进行FFT运算;等待运算结束后,结果才可以输出。在运算过程中,不发生数据的装载或输出。

在数字设计中,FFT和IFFT处理单元时可以采用相同的结构来实现的。具体的方法是:在做IFFT运算前,先交换输入数据的实部和虚部,然后送入FFT处理单元按照FFT的结构进行运算,并交换FFT运算结果的实部和虚部,最后除以运算点数N,就可以得到IFFT的运算结果。

该IP核基于上面的方法同时具有进行IFFT运算的功能,通过实时配置端口FWD INV上的电平可以实现复用,分别完成FFT和IFFT运算。在FPGA设计中,利用结构复用减少逻辑单元块,不仅可以节约系统资源,而且能够减少结构间的硬连线及传输线时延,有利于提高系统的工作频率。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭