由于 SiC 具有更快的开关速度,因此对于某些拓扑结构,可缩减无源元器件如电感器的尺寸以降低系统尺寸和成本。光伏发电和大规模储能变得越来越重要,最终将取代所有的污染性能源。由于可再生能源目前仅占全球总发电量的一小部分,因此 SiC 将有长远的发展路向。随着电动车采用率的增加,充电桩将大规模部署,另外,SiC 最终还将成为电动车主驱逆变器的首选材料,因为它可减少车辆的整体尺寸和重量,且能效更高,可延长电池使用寿命。安森美首席碳化硅专家,中国汽车OEM技术负责人 吴桐 博士安森美 (onsemi) 在收购上游
关键字:
202207 安森美 SiC
受访人:水原德健 罗姆半导体(北京)有限公司技术中心总经理1.氮化镓和碳化硅同属第三代半导体,在材料特性上有什么相似之处和不同之处?根据其不同的特性,分别适用在哪些应用领域?贵公司目前在SiC和GaN两种材料的半导体器件方面都有哪些主要的产品? 目前,市场上基本按下图划分几种材料功率半导体器件的应用场景。当低频、高压的情况下适用硅基IGBT,如果稍稍高频但是电压不是很高,功率不是很高的情况下,使用硅基MOSFET。如果既是高频又是高压的情况下,适用碳化硅MOSFET。那么电压不需要很大,功率
关键字:
罗姆 电动汽车 碳化硅
受访人:安森美首席碳化硅专家,中国汽车OEM技术负责人吴桐博士1.氮化镓和碳化硅同属第三代半导体,在材料特性上有什么相似之处和不同之处?根据其不同的特性,分别适用在哪些应用领域?贵公司目前在SiC和GaN两种材料的半导体器件方面都有哪些主要的产品? 氮化镓(GaN)和碳化硅(SiC)具有较高的电子迁移率和较高的能带隙,用它们制成的晶体管具有比硅基晶体管更高的击穿电压和更耐受高温,可以突破硅基器件的应用极限,开关速度更快,导通电阻更低,损耗更小,能效更高。 GaN的开关频率比SiC高得多,而SiC的可靠
关键字:
安森美 SiC
受访人:Robert Taylor是德州仪器(TI)系统工程营销组的应用经理,负责工业和个人电子市场的定制电源设计。他的团队每年负责500项设计,并在过去20年中设计了15000个电源。Robert于2002年加入TI,大部分时间都在担任各种应用的电源设计师。Robert拥有佛罗里达大学的电气工程学士学位和硕士学位。1.氮化镓和碳化硅同属第三代半导体,在材料特性上有什么相似之处和不同之处?根据其不同的特性,分别适用在哪些应用领域?贵公司目前在SiC和GaN两种材料的半导体器件方面都有哪些主要的产品?
关键字:
TI 第三代半导体 GaN SiC
为进一步提升电动车动力性能,全球各大车企已将目光锁定在新一代SiC(碳化硅)功率组件,并陆续推出了多款搭载相应产品的高性能车型。依TrendForce研究,随着越来越多车企开始在电驱系统中导入SiC技术,预估2022年车用SiC功率组件市场规模将达到10.7亿美元,2026年将攀升至39.4 亿美元。 随着越来越多车企开始在电驱系统中导入SiC技术,预估2022年车用SiC功率组件市场规模将达到10.7亿美元。TrendForce指出,目前车用SiC功率组件市场主要由欧美IDM大厂掌控,关键供货
关键字:
TrendForce SiC 功率组件
SEMIKRON和半导体制造商ROHM在开发碳化硅(SiC)功率模块方面已经有十多年的合作。本次ROHM的第4代SiC MOSFET正式被运用于SEMIKRON车规级功率模块「eMPack」,开启了双方合作的全新里程碑。 合作仪式留影,SEMIKRON CEO兼CTO Karl-Heinz Gaubatz先生(左),ROHM德国公司社长 Wolfram Harnack(中),SEMIKRON CSO Peter Sontheimer先生(右)此外,SEMIKRON宣布已与德国一家大型汽车制造商签
关键字:
ROHM SiC SEMIKRON 功率模块
赛米控(总部位于德国纽伦堡)和全球知名半导体制造商罗姆(总部位于日本京都市)在开发碳化硅(SiC)功率模块方面已经开展了十多年的合作。合作仪式剪影:赛米控CEO兼CTO Karl-Heinz Gaubatz先生(左)罗姆德国公司社长 Wolfram Harnack(中)赛米控CSO Peter Sontheimer先生(右) 此次,罗姆的第4代SiC MOSFET正式被用于赛米控的车规级功率模块“eMPack®”,开启了双方合作的新征程。此外,赛米控宣布已与德国一家大型汽车制造商签署
关键字:
罗姆 碳化硅 SiC 无线宽带
基础半导体器件领域的高产能生产专家Nexperia今天宣布推出采用超小DFN封装的新系列20 V和30 V MOSFET DFN0603。Nexperia早前已经提供采用该封装的ESD保护器件,如今更进一步,Nexperia成功地将该封装技术运用到MOSFET产品组合中,成为行业竞争的领跑者。该系列小型MOSFET包括: 新一代可穿戴设备和可听戴设备正在融入新的人工智能(AI)和机器学习(ML)技术,这为产品设计带来了若干挑战。首先,随着功能的增加,可供使用的电路板空间变得十分宝贵,另外,随着
关键字:
Nexperia MOSFET
使用宽带隙半导体作为高频开关为实现更高的功率转换效率提供了有力支持。一个示例是,碳化硅开关可以实施为SiC MOSFET或以共源共栅结构实施为SiC FET。本白皮书追溯了SiC FET的起源和发展,直至最新一代产品,并将其性能与替代技术进行了比较。白皮书当然,接近完美的电子开关已经存在很长一段时间了,但是我们这里要谈的不是机械开关。现代功率转换依赖的是半导体开关,它们最好在打开时没有电阻,在关闭时电阻和耐受电压无限大,并能在简单驱动下以任意快的速度在开关状态间切换且没有瞬时功率损耗。在这个重视能源与成本
关键字:
UnitedSiC SiC
SiC、GaN 作为最新一代功率半导体器件具有远优于传统 Si 器件的特性,能够使得功率变换器获得更高的效率、更高的功率密度和更低的系统成本。但同时,SiC、GaN极快的开关速度也给工程师带来了使用和测量的挑战,稍有不慎就无法获得正确的波形,从而严重影响到器件评估的准确、电路设计的性能和安全、项目完成的速度。SiC、GaN动态特性测量中,最难的部分就是对半桥电路中上桥臂器件驱动电压VGS的测量,包括两个部分:开关过程和Crosstalk。此时是无法使用无源探头进行测量的,这会导致设备和人员危险,同时还会由
关键字:
SiC GaN 栅极动态测试 光隔离探头
这篇微信文章,其实构思已久。为了有所铺垫,已在2020和2021发布了两篇基础篇。2022,让我们再次聊聊在SiC单管并联中的寄生导通问题。这篇微信文章,其实构思已久。为了有所铺垫,已在2020和2021发布了两篇基础篇:● 2020《仿真看世界之SiC单管的寄生导通现象》● 2021《仿真看世界之SiC MOSFET单管并联均流特性》2022,让我们再次聊聊在SiC单管并联中的寄生导通问题。特别提醒:仿真只是工具,仿真无法替代实验,仿真只供参考。在展开
关键字:
英飞凌 SiC
电源管理系统要实现高能源转换效率、完善可靠的故障保护,离不开高性能的开关器件。近日,豪威集团全新推出两款MOSFET:业内最低内阻双N沟道MOSFET WNMD2196A和SGT 80V N沟道MOSFET WNM6008。 WNMD2196A 超低Rss(ON),专为手机锂电池保护设计近几年,手机快充技术飞速发展,峰值充电功率屡创新高。在极大地缓解消费者电量焦虑的同时,高功率充电下的安全问题不容小觑。MOSFET在电池包装中起到安全保护开关的作用,其本身对功率的损耗也必须足够低才能
关键字:
豪威集团 MOSFET
双碳目标正加速推进汽车向电动化发展,半导体技术的创新助力汽车从燃油车过渡到电动车,新一代半导体材料碳化硅(SiC)因独特优势将改变电动车的未来,如在关键的主驱逆变器中采用SiC可满足更高功率和更低的能效、更远续航、更小损耗和更低的重量,以及向800 V迁移的趋势中更能发挥它的优势,但面临成本、封装及技术成熟度等多方面挑战。安森美(onsemi)提供领先的智能电源方案,在SiC领域有着深厚的历史积淀,是世界上少数能提供从衬底到模块的端到端SiC方案供应商之一,其创新的VE TracTM Direct SiC
关键字:
安森美 SiC 逆变器
米勒电容引起的寄生导通常被认为是碳化硅MOSFET的弱点。为了避免这种效应,硬开关逆变器通常采用负栅极电压关断。但是,这对于CoolSiC™MOSFET真的是必要的吗?引言选择适当的栅极电压是设计所有栅极驱动电路的关键。凭借英飞凌的CoolSiC™MOSFET技术,设计人员能够选择介于18V和15V之间的栅极开通电压,从而使器件具有极佳的载流能力或者可靠的短路耐用性。另一方面,栅极关断电压仅需确保器件保持安全关断即可。英飞凌鼓励设计人员在0V下关断分立式MOSFET,从而简化栅极驱动电路。为此,本文介绍了
关键字:
英飞凌 MOSFET
高温半导体和功率模块领域的领导者CISSOID宣布,公司已与NAC Group和Advanced Conversion(为要求严苛的应用提供高性能电容器的领导者)开展合作,以提供紧凑且优化集成的三相碳化硅(SiC)功率堆栈。该功率堆栈结合了CISSOID的1200V SiC智能功率模块和Advanced Conversion的6组低ESR/ESL直流支撑(DC-Link)电容器,可进一步与控制器板和液体冷却器集成,为电机驱动器的高功率密度和高效率SiC逆变器(见下图)的设计提供完整的硬件和软件平台。CIS
关键字:
CISSOID SiC
碳化硅(sic)mosfet介绍
您好,目前还没有人创建词条碳化硅(sic)mosfet!
欢迎您创建该词条,阐述对碳化硅(sic)mosfet的理解,并与今后在此搜索碳化硅(sic)mosfet的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473