新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 创新型封装如何推动提高负载开关中的功率密度

创新型封装如何推动提高负载开关中的功率密度

作者:德州仪器时间:2022-04-26来源:电子产品世界收藏

从智能手机到汽车,消费者要求将更多功能到越来越小的产品中。为了帮助实现这一目标,TI 优化了其半导体器件(包括用于子系统控制和电源时序的)的技术。创新支持更高的,从而可以向每个印刷电路板上安装更多半导体器件和功能。

本文引用地址:http://www.eepw.com.cn/article/202204/433519.htm

晶圆级芯片封装方式 (WCSP)

目前,尺寸最小的采用的是晶圆级芯片封装方式 (WCSP)。图1展示了四引脚WCSP器件的示例。

WPS图片.png

图1 四引脚WCSP器件

WCSP技术使用硅片并将焊球连接到底部,可让封装尺寸尽可能小,并使该技术在载流能力和封装面积方面极具竞争力。由于WCSP尽可能减小了外形尺寸,用于输入和输出引脚的焊球数量将会限制能够支持的最大电流。

采用引线键合技术的塑料封装

需要更高电流的应用或工业PC这样的更严苛的制造工艺需要采用塑料封装。图2展示了采用引线键合技术的塑料封装实现。

1650961211297508.png

图2 标准引线键合Quad-Flat No Lead (QFN)封装

QFN或Small-Outline No Lead (SON) 封装使用引线键合技术将芯片连接到引线,从而在为自发热提供良好散热特性的同时,让更大电流从输入端流向输出端。但引线键合塑料封装需要为键合线本身提供大量空间,与芯片尺寸本身相比,需要更大的封装。键合线还可增加电源路径的电阻,从而增加负载开关的总体导通电阻。在这种情况下,折衷方案是在更大尺寸和更高功率支持之间进行平衡。

塑料HotRod封装 

虽然WCSP和引线键合封装都有其优点和限制,但TI的HotRod QFN负载开关结合了这两种封装技术的优点。图3展示了HotRod封装的分解图。

1650961234902766.png

图3 TI HotRod QFN结构和芯片连接

这些无引线塑料封装使用铜柱将芯片连接到封装,因为这种方法比键合线需要的空间小,从而可以尽可能减小封装尺寸。铜柱还支持高电流电平,并且为电流路径增加的电阻极小,允许单个引脚传输高达6A的电流。

表1通过比较TPS22964C WCSP、TPS22975引线键合SON和TPS22992负载开关,说明了这些优点。

表1 各种负载开关解决方案的比较

产品和封装类型

TPS22964C WCSP

TPS22975引线键合SON

TPS22992 HotRod封装

输入电压

1 V 至 5.5V

0.6 V 至 5.7 V

0.1 V 至 5.5V

电流最大值

3 A

6 A

6 A

导通电阻

13mΩ

16mΩ

8.7mΩ

可调上升时间

电源正常信号

可调快速输出放电

解决方案尺寸

1.26mm2

4mm2

1.56mm2

虽然TPS22975引线键合SON器件也可支持6A电流,但实现这一电流电平需要使用两个引脚来提供输入和输出电压,这会限制其他功能的数量,例如电源正常和可调上升时间。键合线还可增加器件的导通电阻,从而限制最大电流。

WCSP负载开关是这三种解决方案中最小的,但其受限的引脚使其具有的功能最少,支持的电流最低。

结语

TPS22992负载开关结合了WSCP和SON的优点,既具有WCSP解决方案尺寸小巧的优点,也具有引线键合SON解决方案的大电流支持和额外功能。TI的 TPS22992和TPS22998负载开关使用HotRod封装优化小解决方案尺寸,同时支持大电流、低导通电阻和许多器件功能。



评论


相关推荐

技术专区

关闭