新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 级联式逆变器在光伏并网系统的应用研究

级联式逆变器在光伏并网系统的应用研究

作者:时间:2018-09-07来源:网络收藏

摘要:采用级联式多电平逆变器的电路拓扑结构,并对基于此结构的光伏并网系统的控制策略进行研究。为实现有效并网,使得并网电流与电网电压相位一致,在结合单级光伏并网系统控制策略和级联式逆变器控制策略两者特点的基础上,采用阶梯波控制与电流环控制的混合控制方式,并对此系统进行Matlab/Simulink仿真分析,验证这种控制方法的可行性。采用PR调节器的电流环控制,提高了级联式逆变器的效率。
关键词:光伏并网系统;级联式逆变器;PR调节器;混合控制

0 引言
随着国际上对于清洁能源的要求越来越高,我国逐渐开始加大光伏发电等清洁能源在整个电网发电中的比重。光伏并网技术是光伏发电系统的核心技术之一,光伏发电系统主要由太阳能板、DC-DC升压电路、逆变器、用户(电网)等组成。目前,大多数逆变器采用传统的单级式或多级式,基于这些形式下的太阳能光伏并网系统在结构上存在着如下不足:并网逆变器中开关管的工作频率较高,损耗较大;逆变器工作需要足够的直流电压,这需要多个光伏电池串联起来以达到电压等级的要求,同时,逆变器开关管承受的du/dt较大,整个系统的可靠性下降。采用级联式逆变器就可以很好解决这些传统方式下的不足,本文旨在探讨级联式逆变器在光伏并网中的特点以及基于级联式逆变器的光伏并网系统的Matlab/Simulink仿真研究。

1 基于级联式逆变器的光伏并网发电系统
1.1 级联式逆变器的结构
1988年日本学者M.Marchesoni等人在PESC年会上提出了基于H桥级联的多电平逆变电路结构。该种电路结构以多电平阶梯波来模拟逼近正弦波,从而可以提高输出电压的等级,同时减小高次谐波含量。图1是三相四级级联电路的拓扑结构图。从图1所示的拓扑结构分析可以得知:逆变H桥直流测电压为UDC时,单级H桥输出有UDC,0以及-UDC三种电平,则N级级联结构输出共有2N+1种电平。这种多电平结构使得级联式逆变器具有如下几个优点:各个模块相对独立,可以方便进行更换或扩展成更高电压等级;各个模块的开关器件(IGBT)承受电压相对普通逆变器要低,系统的可靠性增加。

本文引用地址:http://www.eepw.com.cn/article/201809/388670.htm


1.2 光伏并网发电系统的拓扑结构
基于级联式逆变器的光伏并网系统的拓扑结构如图2所示,图中前级为太阳能电池板和DC—DC升压电路(BOOST)电路,后级为多个H桥(DC-AC)级联而成的逆变器,其输出通过网侧滤波器与电网相连。


图2中光伏电池提供各个部分的独立直流电源,DC—DC电路对光伏电池电压升压并完成实现最大功率跟踪控制,DC-AC电路完成实现并网电流与电网电压相位一致。在本文光伏并网系统建模中,级联逆变器输出通过滤波电感与电网相连,在一定控制方式下,完成实现并网电流与电网电压相位一致(功率因素为1),使系统能够实现并网。


上一页 1 2 下一页

关键词:

评论


相关推荐

技术专区

关闭