当人们思考电力电子应用将使用哪种宽禁带(WBG)半导体材料时,都会不约而同地想到氮化镓(GaN)或碳化硅(SiC)。这不足为奇。因为氮化镓或碳化硅是电力电子应用中最先进的宽禁带技术。市场研究公司Yole Développement在其报告中指出,电力电子应用材料碳化硅、氮化镓和其他宽禁带材料具有一个更大的带隙,可以进一步提高功率器件性能。
n型碳化硅SiC晶片到2020年将以21%的CAGR成长至1.1亿美元
由碳化硅电力设备市场驱动,n型碳化硅基
关键字:
GaN SiC
所有MOS集成电路(包括P沟道MOS,N沟道MOS,互补MOS—CMOS集成电路)都有一层绝缘栅,以防止电压击穿。一般器件的绝缘栅氧化层的厚度大约是25nm50nm80nm三种。在集成电路高阻抗栅前面还有电阻——二极管网络进行保护,虽然如此,器件内的保护网络还不足以免除对器件的静电损害(ESD),实验指出,在高电压放电时器件会失效,器件也可能为多次较低电压放电的累积而失效。按损伤的严重程度静电损害有多种形式,最严重的也是最容易发生的是输入端或输出端的完全破坏以至于与
关键字:
MOS 集成电路
简介: 今天一个刚刚入行的朋友找到我说,他的老板给了他一个MOS管让他测管子的fmax,帮他测完之后,他还问到怎么才能加大这个fmax~~想到自己也曾千辛万苦的琢磨这个参数,就写个短短的文章说一下fmax到底是什么和哪些参数有关。
这两个频率都是晶体管的重要参数,无论BJT还是MOS,也决定了将来电路能工作到的最大频率(当然这个最大频率是绝对不可能到fmax和ft的)。这两个频率其实离得不远,那他们有什么差别呢:ft是用电流增益来定义的,fmax是用最大功率增益来定义的,千万别弄混了哦。下图是一
关键字:
MOS fmax
根据YoleDeveloppement指出,氮化镓(GaN)元件即将在功率半导体市场快速发展,从而使专业的半导体业者受惠;另一方面,他们也将会发现逐渐面临来自英飞凌(Infineon)/国际整流器(InternationalRectifier;IR)等大型厂商的竞争或并购压力。
Yole估计,2015年GaN在功率半导体应用的全球市场规模约为1千万美元。但从2016-2020年之间,这一市场将以93%的年复合成长率(CAGR)成长,预计在2020年时可望达到3千万美元的产值。
目前销售Ga
关键字:
氮化镓 GaN
简介:注释:静电损坏器件是击穿,和烧毁是两个概念,不要混淆在一起。
前段时间开发了一个产品,由单片机控制对负载供电,满负载时基准电流为800毫安,程序提供不同的供电模式,具体是由单片机输出一个PWM信号控制MOS管,从而按要求调整工作电流。我们知道MOS管导通时内阻非常小,我们所用的型号约为0.1欧姆的样子,这样正常工作时上面最大压降非常小,只有800毫安*0.1欧姆=0.08伏,上面的功率损耗为0.064瓦,对于电源控制来说是一种效果不错的器件。
虽然MOS管导通内阻非常小,但所流过的电
关键字:
静电损坏 MOS
根据Yole Development预测,功率晶体管将从硅晶彻底转移至碳化硅(SiC)和氮化镓(GaN)基板,以期能在更小的空间中实现更高功率。
在最新出版的“GaN与SiC器件驱动电力电子应用”(GaN and SiC Devices for Power Electronics Applications)报告中,Yole Development指出,促进这一转型的巨大驱动力量之一来自电动车(EV)与混合动力车(HEV)产业。Yole预期EV/HEV产业将持续大力推动Si
关键字:
SiC GaN
目前,电动汽车和工业马达的可变速马达驱动系统,其低损耗·高效率·高频率的性能正在不断进化。因为使用了以低电阻、高速开关为特点的SiC和GaN等新型功率元件的PWM变频器和AC/DC转换器、DC/DC转换器,其应用系统的普及正在不断加速。构成这些系统的变频器·转换器·马达等装置的开发与测试则需要相较以前有着更高精度、更宽频带、更高稳定性的能够迅速测量损耗和效率的测量系统。
各装置的损耗和效率与装置的输入功率和输出功率同时测量,利用它们的差和比
关键字:
SiC GaN 电流传感器
1月出席DesignCon 2015时,我有机会听到一个由Efficient Power Conversion 公司CEO Alex Lidow主讲的有趣专题演讲,谈到以氮化镓(GaN)技术进行高功率开关组件(Switching Device)的研发。我也有幸遇到“电源完整性 --在电子系统测量、优化和故障排除电源相关参数(Power Integrity - Measuring, Optimizing, and Troubleshooting Power Related Parameter
关键字:
GaN EMI
欧盟EUP环保指令你知道吗?你知道此指令对静态能耗有什么要求吗?我们产品上需要怎样应对呢?下面给你解决此问题的电源供电方案。
2009年1月6日,欧盟电子类产品待/关机模式之EuP能耗指令执行措施已正式生效,其生态化设计要求与去年7月经欧盟生态化设计管理委员会批准的工作草案相同。厂商需在2010年1月6日前达到第一阶段的要求,2013年1月6日达到第二阶段要求。
图1 Eup图标
我们来了解一下EuP能耗指令第二阶段的具体要求,
1、产品在关机或待机
关键字:
MOS AC-DC
【前言】在高端MOS的栅极驱动电路中,自举电路因技术简单、成本低廉得到了广泛的应用。然而在实际应用中,MOS常莫名其妙的失效,有时还伴随着驱动IC的损坏。如何破?一个合适的电阻就可搞定问题。
【问题分析】
上图为典型的半桥自举驱动电路,由于寄生电感的存在,在高端MOS关闭后,低端MOS的体二极管钳位之前,寄生电感通过低端二极管进行续流,导致VS端产生负压,且负压的大小与寄生电感与成正比关系。该负压会把驱动的电位拉到负电位,导致驱动电路异常,还可能让自举电容过充电
关键字:
MOS SCR
英飞凌科技股份公司今日宣布扩充其硅基氮化镓(GaN)技术和产品组合。目前,英飞凌提供专为要求超高能效的高性能设备而优化的增强模式和级联模式GaN平台,包括服务器、电信设备、移动电源等开关电源应用以及诸如Class D音频系统的消费电子产品。GaN技术可以大幅地缩小电源的尺寸和减轻电源的重量,这将为GaN产品在诸如超薄LED电视机等终端产品市场开辟新的机会。
英飞凌科技股份公司电源管理及多元化市场事业部总裁Andreas Urschitz表示:“英飞凌的硅基GaN产品组合,结合公司了所
关键字:
英飞凌 GaN
英飞凌科技股份公司和松下电器公司宣布,两家公司已达成协议,将联合开发采用松下电器的常闭式(增强型)硅基板氮化镓(GaN)晶体管结构,与英飞凌的表贴(SMD)封装的GaN器件。在此背景下,松下电器向英飞凌授予了使用其常闭型GaN晶体管结构的许可。按照这份协议的规定,两家公司均可生产高性能GaN器件。由此带来的益处是客户可以从两条渠道获得采用可兼容封装的GaN功率开关。迄今为止,没有任何其他硅基板GaN器件提供了这样的供货组合,双方商定不披露任何其他合同细节。
作为新一代化合物半导体技术,硅基板Ga
关键字:
英飞凌 松下 GaN
近日,德州仪器推出了业内首款80V、10A集成氮化镓 (GaN) 场效应晶体管 (FET) 功率级原型机。此次原型机由位于四方扁平无引线 (QFN) 封装内的一个高频驱动器和两个采用半桥配置的GaN FET组成,使之非常易于设计。如需了解更多信息,敬请访问www.ti.com.cn/lmg5200-pr-cn。
全新的LMG5200 GaN FET功率级原型机将有助于加快下一代GaN电源转换解决方案的市场化,此方案为空间有限且高频的工业应用和电信应用提供更高的功率密度和效率。
TI高压电源
关键字:
德州仪器 GaN
英飞凌科技股份公司和松下电器公司宣布,两家公司已达成协议,将联合开发采用松下电器的常闭式(增强型)硅基板氮化镓(GaN)晶体管结构,与英飞凌的表贴(SMD)封装的GaN器件。在此背景下,松下电器向英飞凌授予了使用其常闭型GaN晶体管结构的许可。按照这份协议的规定,两家公司均可生产高性能GaN器件。由此带来的益处是客户可以从两条渠道获得采用可兼容封装的GaN功率开关。迄今为止,没有任何其他硅基板GaN器件提供了这样的供货组合。双方商定不披露任何其他合同细节。
作为新一代化合物半导体技术,硅基板Ga
关键字:
英飞凌 GaN
英飞凌和松下联合开发GaN器件,将松下的增强型GaN材料技术与英飞凌的SMD封装技术相结合。
关键字:
英飞凌 松下 GaN
gan mos driver介绍
您好,目前还没有人创建词条gan mos driver!
欢迎您创建该词条,阐述对gan mos driver的理解,并与今后在此搜索gan mos driver的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473