英特尔执行总裁:人工智能依旧是新生事物
机器学习与深度学习
本文引用地址:https://www.eepw.com.cn/article/201608/295803.htm布莱恩特表示,在所有的研究服务器中,有7%的服务器处理深度学习,而95%的主要应用于机器学习。所有的深度学习服务器采用了标准的英特尔Xeon处理器芯片,其中仅有2.5%的服务器采用独立的图形处理单元,而另外2.5%则采用了Power或SPARC处理器架构。
布莱恩特称,“当你谈到瘦身服务器架构时,实际上是GPU加速器起到了一定功能。”布莱恩特自1985年起就在英特尔工作,曾担任英特尔的首席信息官。在谈到该面向深度学习还是机器学习时,她指出,“目前绝大多数服务器工作负载是机器学习,去年深度学习的部署量仅占所有服务器数量的0.1%。”
如果该数据可信,那么意味着英特尔进入人工智能这个市场的确不晚。在过去五年内,研究人员认为通过图形处理单元训练深度学习系统成本较低。但或许英特尔会改变这一切。
布莱恩特表示,“我们会研发新的深度学习解决方案。虽然这个市场很小,但终将会迎来爆发。”而Xeon Phi处理器芯片势必成为英特尔推动人工智能市场业务的拳头产品。
回到未来
早在上世纪80年代,当一大批初创企业进入人工智能领域,扎堆研发人工智能技术时,英特尔也开始开发人工智能产品。但事实上这些产品从未走出英特尔的实验室。布莱恩特称,“他们发明产品的时间过早,随后将其搁置了。”
2000年前后,英特尔启动了一个名为Larrabee的项目,旨在研发独立的图形加速器,该产品与Nvidia用于各网络服务器的图形处理单元非常相似。但由于英特尔随后改变了业务重点,导致Larrabee产品的研发夭折。后来在2012年,该项目更名为Larrabie Xeon Phi。
而现在,谷歌又提出了一种面向深度学习的新型芯片——张量处理单元(TPU)。谷歌称这种新型芯片将为谷歌的TensorFlow等深度学习架构提供“更为先进的处理功能”。
布莱恩特认为这种产品很好,其将有效提高深度学习的数据推理性能。但谷歌的这种芯片需要进行调校,而不像英特尔提供给各个公司的现成服务器芯片一样拿来就可使用。
布莱恩特指出,“在一个数据中心中,一个巨大的云服务往往包括成百上千台服务器。你肯定希望这些服务器能够统一。但往往因为处理器不统一而导致诸如Tensor Flow深度学习推理功能无法加载。因此数据中心的一致性尤为重要。因此我们的任务时搞清Tensor Flow的处理架构并将相关功能整合进Xeon处理器芯片之中。”
同时,英特尔也将会把新收购企业Nervana的相关技术整合进芯片之中,把Xeon处理器芯片真正打造成为深度学习的标杆产品。布莱恩特指出,此次交易还远远没有结束。
评论