基于DSP实现的一种新颖开关逆变电源
第二阶段 谐振
由于电路隔直电容和谐振电感(包括变压器中漏感)谐振,电感在第一阶段所保存的能量得以释放。当谐振电流到零时,关断Q1。此阶段Q2、Q4导通,Q5延迟一段时间再关断。如图2中ug5所示。
第三阶段 Q2,Q3导通
在此阶段,使Q6在Q2,Q3导通前提前导通。当Q2,Q3(Q1,Q2之间有死区)导通时,直流侧的能量便可传递到输出端,此时Q6为软开通。如图2中ug6所示。
第四阶段 谐振
工作原理同第二阶段类似,此时电流方向与第二阶段相反,当电感上的能量释放完毕,关断Q6。此时一个周期便结束,开始下一个周期。
从图1可以看出,无论变压器副边电压极性如何,若Q5导通、Q6关断,则输出端OUT1为正,OUT2为负;若Q6导通,而Q5关断,则OUT2为正,而OUT1为负。所以,控制Q5,Q6的导通顺序,即可控制输出端的极性,并可获得多种波形,例如交流、脉冲等波形均可实现。如要输出正弦波的正半周时,PULS1控制Q1,Q4,PULS2控制Q2,Q3,并同时让Q5,Q6相应地提前导通,便可输出正弦波的正半周,如图3所示。
(a) 驱动波形
(b) 输出波形
图3 输出正弦波的正半周
要输出正弦波的负半周,只需让Q5,Q6的导通顺序交换便可,如图4所示。
(a)
(b)
图4 输出正弦波的负半周
5 软件实现
TMS320LF2407的处理速度为30MIPS,几乎所有的指令都可在50ns的单周期内完成,配合其强大的指令运算功能,很容易实现各种控制算法及高速的实时采样,可提高系统的工作效率。为了改善系统的动态品质,并减小系统的静差,采用了闭环来实现各个功率变换环节的控制。
5.1 PWM波的输出
本文采用三角波作为载波的规则采样法,来获得等高不等宽的矩形波,即脉冲。每个脉冲的中点都与相应的三角波的中点相对应,在三角波的负峰值时刻tD对正弦调制波采样而得D点,过D点作一水平直线和三角波分别交于A点和B点,如图5所示。则有
δ=Tc(1+sinωrtD)/2
图5 采样三角波载波的规则采样法
根据这一关系式,如果一个周期内有N个矩形波,则第i个矩形波的占空比为
Dr=0.5+0.5sin(i*2π/N)
用周期和占空比分别去设定TMS320LF2407中PWM电路相应的寄存器,便可在PWMx(x=1,2,3,4,7,8)上获得所需的PWM脉冲波形,由这些PWM脉冲去控制相应的6个开关管,便可输出正弦波形。要注意的是,输出正弦波质量的高低与用作控制的正弦波的离散数量有关,如果离散数量越多,则输出的正弦波就越平滑,但却增加了DSP的运算量。反之输出会越差。因此,对具体的应用场合,要选择合适的离散值。定时器T1,T3被设定为下溢和周期匹配中断方式,用作PWM输出时基,工作在连续增/减记数模式。
评论