新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 燃料电池车载大功率DC/DC变换器的设计与应用

燃料电池车载大功率DC/DC变换器的设计与应用

作者:时间:2009-07-27来源:网络收藏

1,前言

本文引用地址:http://www.eepw.com.cn/article/188801.htm


/车动力系统中一个重要部分。主要功能是把不可调的直流电源变为可调的直流电源。如何有效地控制的各个参数,不仅关系到FCE(Fuel Cell Engineer)和BMU(Battery Management Unit)的正常运行,而且也关系到整个轿车的动力性能、能源利用效率及其他控制系统可靠的运行[3]的输出特性偏软,难以直接与电动机驱动器匹配,其电流-电压特性曲线如图1所示。在燃料电池加负载的起始阶段,电压Ufc下降较快,随着负载的增加,电流增大,电压下降,下降的斜率比普通电池大得多,故燃料电池的输出特性相对较软;对于某特定负载,输出功率的波动会导致燃料电池效率下降。

图1 燃料电池电流-电压特性曲线

图2 燃料电池车能源驱动结构

与传统汽车一样,燃料电池汽车也必须具有很强的机动性,以便对不同的路况及时做出相应的反应,为满足机动性的要求,燃料电池汽车驱动所需功率会有较大的波动,这与燃料电池的输出特性偏软是相矛盾的。另一方面,燃料电池的输出功率若波动较大,其效率会大大下降,反面影响其机动性能。因此,若以燃料电池作为电源直接驱动,一方面输出特性偏软,另一方面燃料电池的输出电压较低,在燃料电池与汽车驱动之间加入/DC,燃料电池和DC/DC变换器共同组成电源对外供电如图2所示,从而转换成稳定、可控的直流电源。合理的DC/DC变换器的设计对燃料电池车显的尤为重要。

2,DC/DC基本硬件电路及工作原理

DC/DC变换器按输入与输出间是否有电气隔离可以分为没有电气隔离和有电器隔离的直流变化器两类。按工作电路区分有降压式(BUCK),升压式(BOOST),升降压式(BUCK/BOOST),库克(CUK),瑞泰(ZETA),塞皮克(SEPIC)等六种[1]。设计采用没有隔离的双向Zeta-Sepic直流变换器电路,工作原理电路图如图3所示。

主电路由两开关管Q1和Q2,两二极管D1和D2构成。Q1和Q2为PWM工作方式,互补导通,有死区时间。变换器输出与输入电压间的关系为V2/V1=Dy/(1-Dy),式中,Dy

图3 双向Zeta-Sepic直流变换器设计电路图



图 4 能量从V1向V2流动

图5 能量从V2向V1方向流动

图6 交替工作方式

Q2的占空比。图4为能量从V1向V2方向流动时电感电流波形,因Dy>0.5,故V2>V1,I1>I2,I1为电源电流平均值,I2为输出电流平均值。并且IL1>IL2,IL1和IL2为电感电流平均值。电容C1电压VC1为VC1=VC2,不论能量流动方向如何,电容C1电压极性总是左负右正。功率器件承受的电压VQ=VD=V1+V2=V1/(1-Dy),开关管Q1和二极管D2电流平均值IQ1和ID2关系为IQ1=IL1=I1,ID2=IL2=I2。能量传输方向相反时,电流波形如图5所示,图6是交替工作方式的一种情形,因Q1的占空比Dy>0.5,V2>V1,I1>I2,故IL1>IL2,iL1的瞬时值都大于零,iL2的瞬时值出现了正负交替变化,iQ1和iQ2的瞬时值也交替变化,4个器件轮流导通[2]。在t=0~t1期间D1续流,t1~ton期间Q1导通,ton~t3期间D2续流,t3~T期间Q2导通。由于Q1是在D1续流期间导通的,故Q1为零电压开通,同理Q2亦为零电压开通,由图6知两电感电流平均值IL1和IL2均大于零,故这种情况下平均能量是从V1向V2方向传输。

3,DC/DC变换器控制单元和辅助单元电路设计

Zeta-Sepic电路是DC/DC变换器的核心组件,DC/DC变换器除此外还包括

控制单元和辅助单元电路,其性能直接影响Zeta-Sepic电路的工作质量和整车控制器的准确运行。控制单元与辅助单元电路同Zeta-Sepic一同构成DC/DC变换器的总体硬

图7 DC/DC变换器系统结构图

件电路。其系统结构图如图7所示。

3.1控制单元

控制单元选用单片机MC9S12D64,它延续了飞思卡尔半导体在车用微控制器领域的优良传统,是以速度更快的S12内核(Star Core)为核心的单片机MC9S12系列的成员,管脚兼容,存储器可以得到升级。并且片内有多种外围设备可供选择。 MC9S12D64共有8种工作模式,模式的设定通过复位期间采集BKGD、MODB、MODA三个引脚的状态来实现[5]。增强了应用的可选择性。控制单元通过CAN通讯网络接受整车控制器的指令,按照协议翻译指令对燃料电池电堆提取相应的功率,并将通过传感器检测到的DC/DC变换器的高低端的电流电压值按照协议上传CAN通讯网络。同时读取温度传感器的值,根据要求适时的启动散热风扇。

3.2CAN通讯硬件接口电路

做为燃料电池车的DC/DC变换模块,须参与整车的通讯和控制,通过接受整车控制信号指令做出相应的动作,对燃料电池提取功率。

CAN通讯接口硬件设计如图8所示,其中82C250是CAN控制器和物理总线间的接口[4],它和CAN控制器之间采用光隔P113以提高系统的抗干扰能力。


上一页 1 2 下一页

评论


相关推荐

技术专区