虽然台积电计划在 2027 年退出氮化镓(GaN)晶圆代工业务,但行业巨头英飞凌正在加大力度。凭借其强大的 IDM 模式,英飞凌根据其新闻稿 ,正在推进其在 300 毫米晶圆上的可扩展氮化镓生产,首批客户样品定于 2025 年第四季度发布。根据 商业时报 的报道,台积电计划于 2027 年 7 月 31 日终止其氮化镓晶圆代工服务,称中国竞争对手带来的价格压力是主要驱动因素。 自由时报 补充说,由于对氮化镓的低利润前景持怀疑态度,台积电已决定逐步淘汰其氮化镓业务,并
关键字:
英飞凌 氮化镓 晶圆代工
瑞萨电子宣布推出其 Gen 4+ Super GaN 平台,该平台具有适用于高功率应用的 650 V、30 毫欧姆氮化镓器件。此次发布代表了该公司在收购 Transphorm 并与其控制器和驱动器 IC 产品线集成后对 GaN 技术的持续投资。与之前的 35 毫欧姆器件相比,Gen 4+ 平台的 RDS(on) 和芯片尺寸减小了 14%,直接降低了成本。开关品质因数提高了 50%,而输出品质因数提高了 20% 以上。在比较测试中,瑞萨电子在 4 kW 电源应用中的损耗比领先的碳化硅 MOSFET 和 JF
关键字:
650V GaN 器件 高功率应用 SiC
台积电昨日在一份声明中表示,将在未来两年内逐步淘汰其化合物半导体氮化镓 (GaN) 业务,并援引市场动态。这家全球最大的合同芯片制造商表示,这一决定不会影响其之前宣布的财务目标。“我们正在与客户密切合作,以确保平稳过渡,并在此期间继续致力于满足他们的需求,”它说。“我们的重点仍然是为我们的合作伙伴和市场提供持续的价值。”台积电的最新举措出乎意料,因为这家芯片制造商在其年度报告中表示,它已经开发了第二代 650 伏和 100 伏 GaN 芯片,预计将于今年开始生产,同时它正在开发 8 英寸 650 伏增强型
关键字:
台积电 氮化镓 Powerchip
国际功率半导体厂纳微半导体于提交美国证券交易委员会(SEC)消息指出,台积电将于2027年7月31日结束氮化镓(GaN)晶圆代工业务,拟向力积电寻求产能支持。 对此,台积电回应表示,经过完整评估后,决定在未来两年内逐步退出氮化镓(GaN)业务。台积电透露,该决定是基于市场与台积电公司的长期业务策略; 公司正与客户紧密合作确保在过渡期间保持顺利衔接,并致力在此期间继续满足客户需求。同时,台积电也指出,仍将着重为合作伙伴及市场持续创造价值; 而该项决定将不会影响之前公布的财务目标。业界认为,台积电此举凸显中国
关键字:
台积电 纳微半导体 GaN
Renesas Electronics 表示,随着市场竞争加剧,公司正在加大对其氮化镓(GaN)功率器件的承诺,并转向使用 200 毫米晶圆和 650V d 模式器件。Navitas Semiconductor 也通过与大功率芯片和英飞凌技术的合作,转向使用 200 毫米晶圆,而英飞凌技术正在准备在更大的 300 毫米晶圆上进行生产。Renesas 的举措是基于与美国 Polar Semiconductor 的最近合作协议,以及在 2027 年开始在日本第二个 200 毫米晶圆厂的生产。该公司宣布已暂停碳
关键字:
瑞萨 氮化镓
全球半导体解决方案供应商瑞萨电子近日宣布推出三款新型高压650V GaN FET——TP65H030G4PRS、TP65H030G4PWS和TP65H030G4PQS,适用于人工智能(AI)数据中心和服务器电源(包括新型800V高压直流架构)、电动汽车充电、不间断电源电池备份设备、电池储能和太阳能逆变器。此类第四代增强型(Gen IV Plus)产品专为多千瓦级应用设计,将高效GaN技术与硅基兼容栅极驱动输入相结合,显著降低开关功率损耗,同时保留硅基FET的操作简便性。新产品提供TOLT、TO-247和T
关键字:
瑞萨 GaN FET SuperGaN
EPC Space 推出了 EPC7030MSH,这是一款 300 V 抗辐射 GaN FET。该解决方案提供高功率电流额定值,为卫星电源和推进应用树立了新的基准。EPC7030MSH随着卫星制造商过渡到更高电压的电源总线和更苛刻的功率密度,EPC Space 最新的 GaN 器件满足了对紧凑、高效和抗辐射功率转换日益增长的需求。EPC7030MSH专为在极端辐射和热条件下运行的前端 DC-DC 转换器和电力推进系统而设计。文档显示,该器件的额定工作电压为 300 V,线性能量传输 (LET) 为 63
关键字:
GaN FET 卫星电源
法国电力初创公司 Wise Integration 正计划推出一种带有氮化镓 (GaN) 晶体管的联合封装数字控制器,以简化工业和数据中心 AI 电源系统的设计。与此同时,该公司推出了用于基于 GaN 的图腾柱功率因数校正 (PFC) 的数字控制器。零电压开关 (ZVS) 开关算法在 STMicroelectronics 的 STM32G4 控制器中实现,形成 WiseWare1.1 控制器,支持高达 2MHz 的开关,适用于更小的设计,效率高达 98%。“对于公司来说,将这款数字控制器推向市场是一个重要
关键字:
Wise GaN 数字控制器
麻省理工学院和其他地方的研究人员开发了一种新的制造工艺,将高性能 GaN 晶体管集成到标准硅 CMOS 芯片上来自麻省理工学院网站:他们的方法包括在 GaN 芯片表面构建许多微小的晶体管,切出每个单独的晶体管,然后使用低温工艺将所需数量的晶体管键合到硅芯片上,以保持两种材料的功能。由于芯片中只添加了少量的 GaN 材料,因此成本仍然很低,但由此产生的器件可以从紧凑的高速晶体管中获得显著的性能提升。此外,通过将 GaN 电路分离成可以分布在硅芯片上的分立晶体管,新技术能够降低整个系统的温度。研究人员使用这种
关键字:
3D芯片 电子设备 GaN
类人机器人集成了许多子系统,包括伺服控制系统、电池管理系统 (BMS)、传感器系统、AI 系统控制等。如果要将这些系统集成到等同人类的体积内,同时保持此复杂系统平稳运行,会很难满足尺寸和散热要求。类人机器人内空间受限最大的子系统是伺服控制系统。为了实现与人类相似的运动范围,通常在整个机器人中部署大约40个伺服电机 (PMSM) 和控制系统。电机分布在机器人身体的不同部位,例如颈部、躯干、手臂、腿、脚趾等。该数字不包括手部的电机。为了模拟人手的自由操作,单只手即可能集成十多个微型电机。这些电机的电源要求取决
关键字:
TI GaN FET 类人机器人
本文阐释了在开关模式电源中使用氮化镓(GaN)开关所涉及的独特考量因素和面临的挑战。文中提出了一种以专用GaN驱动器为形式的解决方案,可提供必要的功能,打造稳固可靠的设计。此外,本文还建议将LTspice®作为合适的工具链来使用,以便成功部署GaN开关。
关键字:
开关电源 SMPS 氮化镓 GaN ADI
纳芯微发布专为增强型GaN设计的高压半桥驱动芯片NSD2622N,该芯片集成正负压稳压电路,支持自举供电,具备高dv/dt抗扰能力和强驱动能力,可以显著简化GaN驱动电路设计,提升系统可靠性并降低系统成本。应用背景近年来,氮化镓高电子迁移率晶体管(GaN HEMT)凭借高开关频率、低开关损耗的显著优势,能够大幅提升电源系统的功率密度,明显优化能效表现,降低整体系统成本,在人工智能(AI)数据中心电源、微型逆变器、车载充电机(OBC)等高压大功率领域得到日益广泛的应用。然而,GaN器件在实际应用中仍面临诸多
关键字:
纳芯微 高压半桥驱动 E-mode GaN
新的基于 GaN 的架构将使海量数据的通信和传输变得更加容易。
关键字:
GaN
美国马萨诸塞州沃尔瑟姆的 Finwave Semiconductor Inc 宣布了一轮新的 $8.2m 短期投资,由 Fine Structure Ventures、Engine Ventures 和 Safar Partners 领投,技术合作伙伴 GlobalFoundries 战略参与。Finwave 认为,新一轮融资表明投资者和行业领导者对其独特的硅基氮化镓技术的市场潜力充满信心,因为它正在从以技术为中心的创新者转变为产品驱动型公司。这家科技公司由麻省理工学院 (MIT) 的研究人员于 2012
关键字:
Finwave 短期投资 GaN FinFET
随着AI数据中心的快速发展、电动汽车的日益普及,以及全球数字化和再工业化趋势的持续,预计全球对电力的需求将会快速增长。为应对这一挑战,英飞凌科技股份公司近日推出EasyPACK™ CoolGaN™ 650 V晶体管模块,进一步扩大其持续壮大的氮化镓(GaN)功率产品组合。该模块基于Easy Power Module平台,专为数据中心、可再生能源系统、直流电动汽车充电桩等大功率应用开发。它能满足日益增长的高性能需求,提供更大的易用性,帮助客户加快设计进程,缩短产品上市时间。英飞凌EasyPACK™英飞凌科技
关键字:
英飞凌 EasyPACK CoolGaN 功率模块 氮化镓
氮化镓(gan)器件介绍
您好,目前还没有人创建词条氮化镓(gan)器件!
欢迎您创建该词条,阐述对氮化镓(gan)器件的理解,并与今后在此搜索氮化镓(gan)器件的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473