基于 MATLAB 的简谐振动合成图形的动态演示
(2)如果两振动频率相差较大,但有简单整数比,则合成运动有稳定封闭的运动轨迹,称为李萨如图形,其形状与互相垂直的分振动的角频率之比、各自初相位以及初相位差都有关系。图2 为两振动的频率有简单的整数比,合成运动为李萨如图形。运行中可以看到以质点运动轨迹的方式呈现的动画。

2.3 三维简谐振动的合成
设分别沿z、y 和z 向的频率不同的简谐振动的表达式为:

此方程组就是合运动轨迹的参数方程。
设x、y 和z 向振动满足频率比为整数比:

其中 n1 , n 2为不可约的整数, n1 和n 3为不可约的整数,那么存在:
T=nT1其中1 T 是x 方向的振动周期,n 是1 n 和2 n 的最小公倍数,T就是(1)式描述的空间曲线的参数周期,也就是上述曲线为闭合曲线。以x、y 和z 为坐标的空间点在时间T 内完成闭合曲线的一次扫描,然后重复扫描,这就是三维李萨如曲线。如果不满足(2)式,那么(1)式描述的曲线不是闭合曲线[8].
利用MATLAB 进行三维简谐振动的合成,得到图3.可看出,当分振动为简单整数比时,三维合成的图像也有类似李萨茹图像的情况。

3 GUI 界面及仿真流程
利用MATLAB 制作的用户界面人工操作,用户通过主页面选择所需功能,进入各功能页面后完成各函数读取目标,完成函数识别与图像的合成。整个仿真实验的流程如图4.

4 结束语
该实验通过MATLAB 制作,利用MATLAB 作为仿真平台,动态显示多个不同频率的简谐振动、互相垂直的不同频率的两个简谐振动、三维简谐振动的合成,让学生能在计算机上形象直观的认识并掌握三维的简谐振动的合成图象,尤其是多个、稍大频率的李萨如图形的合成,得出大频率李萨如图形仿真实验图象。
评论