超级电容在电动车中应用研究及发展趋势分析
2.3复合电源系统的控制策略
本文引用地址:https://www.eepw.com.cn/article/201606/292306.htm
2.3.1速度约束控制策略
当车辆起步时,超级电容中应当储存较多的能量,需要超级电容放电,保证电动车的加速性能,而当车辆在高速行驶的情况下,超级电容应当储存比较少的能量,以便在制动过程中接收较多的能量。超级电容储存的能量与其端电压的平方成正比,由于超级电容的端电压变化范围比较大,因此放电时如何控制其放电深度,以备在行驶过程中二次放电或进行再生制动回收充电,但需要在实验中反复进行测试才能获得。
2.3.2电流约束控制策略
电动车在行驶过程中,由于频繁地加速、减速和上下坡等原因,使得负载电流变化比较大,当负载电流太大以至于超过蓄电池所能承受的最大放电或充电电流时,为了避免电池组过放电或过充电,需要由超级电容放电或充电,以便改善电池组的工作状态,延长其使用寿命。电池组的工作电流为:

为了避免过大的回馈电流对蓄电池造成损害,可采用恒定充电电流的制动方式,即以蓄电池充电电流为被控对象。这是一种比较实用的控制策略,适合于采用蓄电池单电源系统的电动车。由于蓄电池电压在再生制动过程中不会发生明显的变化,因此电枢电流的上升不会太大。在超级电容一蓄电池复合电源系统中,由于超级电容端电压在单次再生制动过程中就会发生很大的改变,随着制动过程中超级电容端电压的上升和电机反电动势的下降,电枢电流将急剧上升,有可能对功率器件甚至电机造成损害,因此对超级电容充电时可采用恒功率的策略,即对再生制动过程中超级电容的充电功率进行控制。
在超级电容电压低的时候,采用大电流充电,当电容电压上升时,充电电流指令值下降,可兼顾能量回收与系统器件保护。
2.3.3综合控制策略
采用速度约束控制策略可使车辆的动力性能得到提高,而采用电流约束控制策略时蓄电池的电流可以工作在规定的范同内,对蓄电池有保护作用。这2种控制策略各有优缺点,采用综合控制策略。即将速度约束控制策略和电流约束控制策略进行综合应用,可以兼顾它们的优点,既能对蓄电池起到保护作用,延长电池的使用寿命,又能提高整车的动力性能。
3、西安交通大学的超级电容应用研究
西安交通大学电动车研发中心一直致力于电动车关键技术领域的研发,提交了15项国家发明专利,正式授权5项,有2项国际发明专利已经被正式受理。研发中心对电动汽车超级电容一蓄电池复合电源系统进行了研究,其核心是应用了双向全桥DC/DC变换器,该变换器具有能量双向流动以及升、降压功能。研发中心率先将Hα鲁棒控制算法应用到电动汽车复合电源能量回收技术上,和传统控制方法相比,Hα鲁棒控制可以方便地同时考虑输入电压的变化、负载扰动和其他非线性的补偿。由图3所示的实验表明,在市内道路行驶时,采用Hα,鲁棒控制的复合电源电动汽车(ⅪTUEV—I)比蓄电池单电源电动汽车提高续驶里程30%~50%。







评论