手机充电系统面临的问题及解决措施
为了增加手机充电系统的安全性和可靠性,AW3206具有以下特点:
1、6.8V的输入保护电压,适用于适配器输出电压为5~6V的国内手机充电系统;
2、集成K-Charge技术的输入限流保护,既能在芯片温度低的时候保证比较大的充电电流,又能在芯片结温太高时智能调整输出电流来限制结温,性能与安全兼顾;
3、集成具有防反灌功能的充电P-MOSFET,既节省成本,又可防止待机时电池电流反灌;
4、锂离子电池过压保护和过温保护。
根据市场研究机构Gartner在今年的调查数据显示,诺基亚在全球的市场占有率为34.2%,仍是手机中第一大巨头,而且在某些新兴市场国家诺基亚的市场占有率更高,比如IDC的调查数据显示诺基亚2009年底在印度的市场占有率高达54%。由于诺基亚手机的普遍性,诺基亚适配器也是唾手可得,所以可兼容Nokia适配器的充电系统是设计人员需要考虑的。

图4: 诺基亚适配器AC-3C的输出特性曲线。
但在标准的诺基亚适配器中,有很大一部分适配器的输出电压是高于7V的,图3是诺基亚适配器AC-3C的输出特性曲线,从图中可以看出, AC-3C的输出电压在空载时为7.5V,而有的诺基亚充电器的输出电压会高达8~9V。为了适应诺基亚适配器,曾有如图5所示的用高压LDO设计的手机充电系统方案:

图5: 针对诺基亚适配器的手机充电系统方案。
但这个方案会有一些问题,首先高压LDO由于工艺尺寸较大(为了承受高输入电压),导通电阻RDS(ON)会比较大,诺基亚适配器的输出电压会随输出电流增大而逐渐降低,充电电流越大,输出电压越低,过大的LDO导通电阻会使电压进一步降低,而LDO后面的充电模块也有一定的导通压降,这样就可能会有加到电池上的电压太低而使电池充不满的情况。另外LDO多采用SOT23-5L的封装形式,高输入电压充电时在LDO内部的功耗比较大,散热会存在问题。没有OVP保护功能、整个方案的占板面积大、成本高也都是这个方案的缺点,所以一个适用于诺基亚适配器的单芯片手机充电系统方案是设计人员迫切需要的。

图6: 适用于诺基亚适配器的单芯片手机充电系统方案。
评论