新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于FPGA和DDS的数控信号源的设计与实现

基于FPGA和DDS的数控信号源的设计与实现

作者:时间:2012-04-23来源:网络收藏

摘要 以为核心,根据原理,采用VHDL语言各功能模块。该可输出正弦渡、方波和三角波,输出信号的频率以方式调节,幅度连续可调。与传统相比,该信号源具有波形质量好、精度高、方案简洁、易于、便于扩展与维护的特点。
关键词 信号源;技术;方式

信号源输出信号可作为标准信号和用户自定义信号而成为电气电子各领域,如自动控制、通信电子、电子对抗、航空航天等,以及科研测试中必不可少的电子测量和计量设备。随着科学技术的不断提高,对信号源的频率精度和稳定度、频率范围等要求也越来越高。
传统信号源通常利用石英晶体振荡电路、RC振荡电路或LC振荡电路,电路构造复杂、频率范围较窄、精度和稳定度较低、且调节不方便、电路易于损坏、维护困难。目前直接数字频率合成器(Direct Digital Frequency Synthesizer)是一种主流的频率源合成技术。 DDS具有频率分辨率高、频率切换时间短、相位变换连续、可靠性高等优点。现有DDS技术的信号源实现方案可分为两大类:(1)以DDS专用芯片为核心,单片机为控制模块。(2)以为核心完成DDS功能,单片机作为控制部分。由于DDS专用芯片并不具备LFM功能,而且只能以固定的方式工作,因此第一种方案缺乏灵活性。第二种方案涉及两种编程语言一一汇编语言和硬件编程语言,显然增加了方案的难度和复杂度,同时硬件系统也较复杂,不利于扩展与维护。
文中根据DDS原理,以FPGA为核心,辅以简单的外围电路完成数控信号源的方案,各功能模块利用VHDL语言设计,在FPGA中实现。设计方案既简单方便、易于实现且灵活。

1 设计方案及工作原理
1.1 设计方案
设计方案如图1所示,包括DDS、DAC、LPF、放大、幅度控制、频率设置、波形选择和显示等模块。其中,DDS模块是核心部分,用于产生各种波形数据。DAC及LPF模块将DDS输出的波形数字值转换成模拟值,并通过低通滤波得到平滑的波形信号。幅度控制模块则控制输出波形的幅度。频率设置模块控制输出波形的频率,可采用数控方式调节。显示模块可显示输出波形频率和波形种类。

本文引用地址:http://www.eepw.com.cn/article/177446.htm

c.JPG


图1中的DDS模块、频率设置、波形选择、显示控制模块均在FPGA上实现,用VHDL语言完成设计,只有DAC、LPF、放大、显示器件和输入器件需要外接电路实现,因此硬件系统较为简洁。
1.2 工作原理
设计的基本原理是DDS技术。DDS是查找表思想,事先把波形数据存储于ROM表中,然后相位累加器输出作为地址信号,读出波形数据。但为避免因累加器溢出后下次累加舍掉余值而产生的频率误差,以及累加器高位不同步引起的竞争冒险问题,文中根据李晓芳等人提出的DDS算法优化思路来设计DDS结构。设计的DDS结构如图2所示。相位累加器在系统时钟fclk的作用下,以频率控制字Fword在为步长不断累积,其溢出信号pvo作为地址信号发生器的时钟。地址信号发生器实际是以pvo为触发脉冲的计数器,其输出信号作为ROM表的地址信号。图2中同步寄存器的作用是保证频率字改变时不会影响累加器的正常工作。

d.JPG

lc振荡电路相关文章:lc振荡电路原理

上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭