新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > μC/OS-Ⅱ实时操作系统内存管理的改进

μC/OS-Ⅱ实时操作系统内存管理的改进

作者:时间:2009-03-05来源:网络收藏

μⅡ是一种开放源码的,具有抢先式、多任务的特点,已被应用到众多的上。虽然该内核功能较多,但还是有不甚完善的地方。笔者在分析使用中发现,内核在任务(包括任务调度、任务间的通信与同步)和中断上是比较完善的,具有可以接受的稳定性和可靠性;但在上显得过于简单,分区的建立方式有不合理之处。

本文引用地址:http://www.eepw.com.cn/article/152600.htm

1 管理不足之处的分析

  在分析许多μⅡ的应用实例中发现,任务栈空间和内存分区的创建采用了定义全局数组的方法,即定义一维或二维的全局数组,在创建任务或内存分区时,将数组名作为内存地址指针传递给生成函数。这样实现起来固然简单,但是不够灵活有效。

  编译器会将全局数组作为未初始化的全局变量,放到应用程序映像的数据段。数组大小是固定的,生成映像后不可能在使用中动态地改变。对于任务栈空间来说,数组定义大了会造成内存浪费;定义小了任务栈溢出,会造成系统崩溃。对于内存分区,在不知道系统初始化后给用户留下了多少自由内存空间的情况下,很难定义内存分区所用数组的大小。总之利用全局数组来分配内存空间是很不合理的。

  另外,现在的μⅡ只支持固定大小的内存分区,容易造成内存浪费。μC/OS-Ⅱ将来应该被以支持可变大小的内存分区。为了实现这一功能,系统初始化后能清楚地掌握自由内存空间的情况是很重要的。

2 解决问题的方法

  为了能清楚掌握自由内存空间的情况,避免使用全局数组分配内存空间,关键是要知道整个应用程序在编译、链接后代码段和数据段的大小,在目标板内存中是如何定位的,以及目标板内存大小。对于最后一条,系统编程人员当然是清楚的,第一条编译器会给出,而如何定位是由编程人员根据具体应用环境在系统初始化确定的。因此,系统初始化时,如果能正确安排代码段和数据段的位置,就能清楚地知道用户可以自由使用的内存空间起始地址。用目标板内存最高端地址减去起始地址,就是这一自由空间的大小。

3 举例描述该方法的实现

  下面以在CirrusLogic公司的EP7211上使用μC/OS-Ⅱ为例,描述该方法的实现过程。假设基于μC/OS-Ⅱ的应用程序比较简单,以简化问题的阐述。

3.1 芯片初始化过程和的功能

  EP7211采用了RISC体系结构的核ARM7TDMI,该芯片支持单元MMU。系统加电复位后,从零地址开始执行由汇编语言编写的初始化代码。零地址存放着中断向量表,第一个是复位中断,通过该中断向量指向的地址可以跳转到系统初始化部分,执行微处理器寄存器初始化。如果使用虚拟内存,则启动MMU,然后是为C代码执行而进行的C环境初始化。之后创建中断处理程序使用的栈空间,最后跳转到C程序的入口执行系统C程序。

  对于应用程序,ARM软件开发包提供的ARM会产生只读段(read-only section RO)、读写段(read-write section RW)和零初始化段(zero-initialized section ZI)。每种段可以有多个,对较简单的程序一般各有一个。

  只读段就是代码段,读写段是已经初始化的全局变量,而零初始化段中存放未初始化的全局变量。同时提供这三种段的起始地址和结束地址,并用已定义的符号表示。描述如下:Image$$RO$$Base表示只读段的起始地址,Image$$RO$$Limit表示只读段结束后的首地址;Image$$RW$$Base 表示读写段的起始地址,Image$$RW$$Limit表示读写段结束后的首地址;Image$$ZI$$Base 表示零初始化段的起始地址,Image$$ZI$$Limit表示零初始化段结束后的首地址。

  一般嵌入式应用,程序链接定位后生成bin文件,即绝对地址空间的代码,因此上述符号的值表示物理地址。对于简单程序,可在编译链接时指定RO和RW的基地址,帮助链接器计算上述符号的值。对于较复杂的程序可以由scatter描述文件来定义RO和RW的基地址。

3.2 具体实例及说明

  所谓C环境初始化,就是利用上述符号初始化RW段和ZI段,以使后面使用全局变量的C程序正常运行。下面是初始化部分的实例:

ENTRY ;应用程序入口,应该位于内存的零地址。

;中断向量表

B Reset_Handler

B Undefined_Handler

B SWI_Handler

B Prefetch_Handler

B Abort_Handler

NOP ;保留向量

B IRQ_Handler

B FIQ_Handler

;当用户使用除复位中断以外的几个中断时,应将跳转地址换成中断处理程序的入口地址。

Undefined_Handler

B Undefined_Handler

SWI_Handler

B SWI_Handler

Prefetch_Handler

B Prefetch_Handler

Abort_Handler

B Abort_Handler

IRQ_Handler

B IRQ_Handler

FIQ_Handler

B FIQ_Handler

;程序初始化部分

Reset_Handler

;初始化微处理器寄存器,以使其正常工作。

……

;启动MMU,进入虚拟

……

;初始化C环境。

IMPORT |Image$$RO$$Limit|

IMPORT |Image$$RW$$Base|

IMPORT |Image$$ZI$$Base|

IMPORT |Image$$ZI$$Limit|

LDR r0, =|Image$$RO$$Limit|

LDR r1, =|Image$$RW$$Base|

LDR r3, =|Image$$ZI$$Base|

CMP r0, r1

BEQ %F1

0 CMP r1, r3

LDRCC r2, [r0], #4

STRCC r2, [r1], #4

BCC %B0

1 LDR r1, =|Image$$ZI$$Limit|

MOV r2, #0

2 CMP r3, r1

STRCC r2, [r3], #4

BCC %B2

  在RAM中初始化RW段和ZI段后,ZI段结束后的首地址到系统RAM最高端之间的内存就是用户可以自由使用的空间,也就是说Image$$ZI$$Limit是这一内存空间的起始地址。

  如果系统使用了FIQ和IRQ中断,在ZI段之后可以创建这两种中断的栈空间,然后是使用的SVC模式下的栈空间,假设每一个栈大小为1024个字节。如果系统使用了定时器,还可在此之后创建定时器中断的栈空间,假设其大小也为1024个字节。此时自由内存空间的起始地址变为:

  Image$$ZI$$Limit+1024×4

  在初始化代码的最后将其作为一个参数传递到C程序入口,代码如下:

LDR r0, =|Image$$ZI$$Limit|

;创建IRQ栈空间。

……

;增加地址指针。

ADD r0, r0, #1024

;创建FIQ栈空间。

……

;增加地址指针。

ADD r0, r0, #1024

;创建SVC栈空间。

……

;增加地址指针。

ADD r0, r0, #1024

;创建定时器中断栈空间。

……

;增加地址指针。

ADD r0, r0, #1024

;导入C代码入口点。

IMPORT C_ENTRY

;跳转到C代码,此时r0作为入口参数。

B C_ENTRY

3.3 对实例的总结

  在C程序中,上述起始地址可以作为内存分区创建函数OSMemCreate()的内存地址参数,内存分区的最大值就是目标板RAM的最高端地址减去起始地址的值。图1显示了RO段在RAM中的内存分布情况,这种情况下,程序映像一般被保存在目标板闪存中。系统从闪存启动后,将RO段拷贝到RAM中继续执行。图2显示了RO段在闪存中,RW和ZI段在RAM中的情况。这种情况下,系统启动和代码的执行都发生在闪存中。

用户知道起始地址的值和自由内存的大小后,就可以清楚、灵活地建立和使用内存分区了。可以根据具体需要建立一些大小不同的内存分区,任务栈、事件控制块和消息队列都可以在这些内存分区中分配。系统可以非常清晰地掌握内存使用情况。

  本文针对一种芯片描述了如何实现对μC/OS-Ⅱ。对于其它类型的微处理器,例如CISC指令集的芯片,虽然具体实现过程有所不同,但思路是一样的。

  μC/OS-Ⅱ的内存管理还有需要的地方,例如,现在的内存管理只支持固定大小的分区,而实际应用中有动态分配非固定分区的需求。这就要求μC/OS-Ⅱ有实现该功能的软件结构和内存分配、回收算法。现在能清楚地掌握系统初始化后内存分布情况,为今后实现这些软件结构和算法打下了基础。

linux操作系统文章专题:linux操作系统详解(linux不再难懂)


评论


相关推荐

技术专区

关闭