新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > ARM处理器设计的电机电物理量采集系统

ARM处理器设计的电机电物理量采集系统

作者:时间:2010-12-13来源:网络收藏

摘要:了一种基于和μC/OS II的嵌入式电:该选用低噪声低功耗芯片,对模拟电路进行信号调理和高速;采用高性能工业级(S3C2410一S),结合软件算法进行实时数字信号处理.实验结果表明该具有体积小、重量轻、功耗低、精度较高、实时性好等优点,能有效的流、电压信号,进而使上位机能更方便的进行电分析.

本文引用地址:http://www.eepw.com.cn/article/151211.htm

引言

自19世纪发明发电机和电动机以来,由于电能应用方便,电动机的性能优良,便于控制,使用与操作简单,从而得到了迅速普及,应用范围越来越广.然而,由于电机运行机制复杂,长期处于高速运转和高电压、强磁场环境之下,运行环境恶劣,要求电机设备不出故障是不现实的,绝对安全可靠的电机设备也是根本不存在的l1J.因此,我们只能从预防故障和减少损失的角度出发,及时发现电机的异常,掌握设备的运行状态.对已经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,防患于未然.这就需要我们能实时的精确的采集电机在运行中的各种,进而进行有效的分析、判断故障.传统的数据采集系统多以8/16位单片机构成控制系统,其硬件电路较复杂,集成度较低,和调试难度较大,不太方便系统升级.传统的前后台式的软件方法限制了硬件系统功能的充分发挥,影响了系统的实时性与稳定性.笔者从9来人手,借鉴了一些新的测试方法,并应用ADS1.2设计出一套电机电物理量采集系统.

1 系统简介

本系统设计采集电机的电压、电流2个物理量.其中电流3相都要采集.电物理量采集系统的设计关键在于A/D转换的环节.A/D转换器是模拟信号源和CPU之间联系的接口,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机和数字系统进行处理、存储、控制和显示.在工业控制和数据采集及许多其他领域中,A/D转换是不可缺少的.A/D转换器有以下类型:逐位比较型、积分型、计数型、并行比较型、电压一频率型.主要应根据使用场合的具体要求,按照转换速度、精度、价格、功能以及接口条件等因素决定选择何种类型.本系统的ARM采用三星公司的S3C2410一S,其拥有8路10位A/D转换器,最大转换率为500 KPSO1.S3C2A-10一S的A/D转换器能接受电压范围为0—3.3 V,但电机电信号是成正弦波的图像分布的,超出了A/D转换器能接受的电压范围.所以设计前端调理电路将电信号的正弦波整体向上抬高。使之范围控制在0—3.3 V.然后将电信号输出到A/D转换器.最后经CPU的处理将采集到的数据从串口传送给计算机.进计算机可以对电机物理量进行相应的分析.

2 系统设计

2.1 硬件设计

该系统主要由前端调理电路、CPU集成电路和计算机组成.基本结构如图1所示

其中由于S3C2410一S的A/D转换器能接受电压范围为O~3.3 V,但电机电信号是成正弦波的图像分布的.所以前端调理电路设计将电信号的正弦波负半轴对称折到x轴上方,使之范围控制在0-3.3 V.产生波形如图2所示.

同时电路里产生一个方波信号.当波形属于被翻上去的部分时方波处于低电平,其他时候处于高电平.以此方波信号在上位机来还原波形.CPU集成电路包括直流稳压电源电路、A/D电路、主CPU电路和串口电路.A/D电路接受从转换电路送过来的模拟信号,然后转换成ARMCPU能接受的数字信号.经过处理后从串口电路传送给上位计算机.

2.2 软件设计

2.2.1 μC/OS II操作系统的移植

μC/OS II提供的仅仅是一个任务调度的内核,要想实现一个相对完整,实用的嵌入式实时多任务操作系统,还需要相当多的扩展性的工作,主要包括:建立文件系统(本系统以Flash为存储介质,建立文件和目录)、为外部设备建立驱动程序并规范相应的API函数创建图形用户接口(GUI)函数、建立其他实用的应用程序接口(API)函数等.本系统中基于μC/OS II内核的RTOS软件系统总体框图如图3所示.

2.2.2 应用程序的设计

该程序采用ADS1.2结合c语言来设计.首先是系统初始化,根据ARM芯片固有的功能和特征,进行主程序的入口设置,所用寄存器清零,程序ROM区和数据RAM区的初始化,中断矢量设置等主程序运行前的准备工作.以及检查系统电源,监视芯片上电后的ARM芯片内的硬件运行情况.当ARM芯片运行正常后,进人数据采集软件的主程序运行.流程图如图4所示.


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭