- 德州仪器(TI)副总裁暨台湾、韩国与南亚总裁李原荣,26日于2022 COMPUTEX Taipei论坛中表示,TI将协助客户充分发挥氮化镓(GaN)技术的潜力,以实现更高的功率密度和效率。李原荣今日以「数据中心正在扩建 – 以氮化镓技术实现更高效率」为题,分享设计工程师如何利用TI 氮化镓技术为数据中心达成体积更小、更高功率密度的解决方案。李原荣表示,随着各产业领导者期盼透过数据中心实现技术创新,从而也提高了运算能力的需求,TI希望协助客户充分发挥氮化镓技术的潜力,以实现更高的功率密度和效率。他也强调,
- 关键字:
TI GaN 数据中心 能源效率
- DPD是数字预失真的首字母缩写,许多射频(RF)工程师、信号处理爱好者和嵌入式软件开发人员都熟悉这一术语。DPD在蜂窝通信系统中随处可见,使功率放大器(PA)能够有效地为天线提供最大功率。随着5G使基站中的天线数量增加,频谱变得更加拥挤,DPD开始成为一项关键技术,支持开发经济高效且符合规格要求的蜂窝系统。对于DPD,无论从纯粹的数学角度出发,还是在微处理器上实现更受限制,我们许多人都有自己独特的见解。您可能是负责评估RF基站产品中DPD性能的工程师,或者是一名算法开发人员,很想知道数学建模技术在实际系统
- 关键字:
rf
- 1 GAN与NFT的结合在上一期里,我们说明了天字第一号模型:分类器。接着本期就来看看它的一项有趣应用:GAN(generative adversarial networks,生成对抗网络)。自从2014 年问世以来,GAN 在电脑生成艺术(generative art) 领域,就开始涌现了许多极具吸引力的创作和贡献。GAN 如同生成艺术的科技画笔,使用GAN 进行创作特别令人振奋,常常创作出很特别的效果,给人们许多惊喜的感觉,例如图1。 图1近年来,非同质化代币NFT(
- 关键字:
202205 生成对抗网路 GAN
- 当世界继续努力追求更高速的连接,并要求低延迟和高可靠性时,信息通信技术的能耗继续飙升。这些市场需求不仅将5G带到许多关键应用上,还对能源效率和性能提出了限制。5G网络性能目标对基础半导体器件提出了一系列新的要求,增加了对高度可靠的射频前端解决方案的需求,提高了能源效率、更大的带宽、更高的工作频率和更小的占地面积。在大规模MIMO(mMIMO)系统的推动下,基站无线电中的半导体器件数量急剧增加,移动网络运营商在降低资本支出和运营支出方面面临的压力更加严峻。因此,限制设备成本和功耗对于高效5G网络的安装和
- 关键字:
氮化镓 GaN
- 近期,苹果“爆料大神”郭明錤透露,苹果可能年某个时候推出下一款氮化镓充电器,最高支持30W快充,同时采用新的外观设计。 与三星、小米、OPPO等厂商积极发力氮化镓快充产品相比,苹果在充电功率方面一直较为“保守”。去年10月,伴随新款MacBook Pro的发布,苹果推出了140W USB-C电源适配器(下图),这是苹果首款采用氮化镓材料的充电器,售价729元。图片来源:苹果 如今,苹果有望持续加码氮化镓充电器,氮化镓功率半导体市场有望迎来高歌猛进式发展。手机等快充需求上升,氮化镓功率市场规模将达1
- 关键字:
氮化镓 GaN
- EETOP编译整理自techinsights 在处理氮化镓(GaN)时,与硅(Si)相比,还有两个额外的考虑因素可以优化器件性能。 由于GaN/AlGaN异质结界面上的二维电子气体(2DEG)通道,GaN具有快速开关的潜力。 氮化镓的导热性相对较差。(在300K时约1.3W/cm.K,而硅(Si)为1.49W/cm.K和碳化硅(SiC)为3.7W/cm.K) 虽然体积热导率并不明显低于硅,但请记住更高的电流密度-它被限制在异质结周围的一个小区域。渐进式的改进 虽然不理想,但传统的硅封装可以而且已
- 关键字:
氮化镓 GaN
- 氮化镓(GaN)是电力电子行业的热门话题,因为它可以使得80Plus钛电源、3.8 kW/L电动汽车(EV)车载充电器和电动汽车(EV)充电站等设计得以实施。在许多具体应用中,由于GaN能够驱动更高的功率密度和具有更高的效率,因此它取代了传统的MOSFET晶体管。但由于GaN的电气特性和它所能实现的性能,使得使用GaN元件进行设计时,要面临与硅元件截然不同的一系列挑战。 GaN场效应晶体管包括耗尽型(d-mode)、增强型(e-mode)、共源共栅型(cascode)等三种类型,并且每种都具有各自的
- 关键字:
氮化镓 GaN
- 意法半导体 VIPerGaN50能够简化最高50 W的单开关反激式功率变换器设计,并集成一个 650V 氮化镓 (GaN) 功率晶体管,使电源的能效和小型化达到更高水平。VIPerGaN50 采用单开关拓扑,集成很多功能,包括内置电流采样和保护电路,采用低成本的 5mm x 6mm 紧凑封装。芯片内部集成的GaN 晶体管可应用于高开关频率,从而减小反激变换器的体积和重量。使用这款产品设计先进的高能效开关电源 (SMPS),可显著减少外围元器件的数量。VIPerGaN50 可帮助设计人员利用 GaN 宽禁带
- 关键字:
意法半导体 GaN 功率变换器
- 过去的2020年是5G手机大爆发的一年。5G手机无疑为大家带来了更快的上网体验,更快的下载速度、低延时,高达10Gps/s的理论峰值速率,比4G手机数据传输提升10倍以上,延时更是低至1ms,比4G手机缩短10倍。 当然,5G对数据传输速度提升,更强的CPU处理性能也对手机的续航能力提出了更高要求。为此,不少手机厂商为5G手机配备更大容量的电池,采用更高的充电功率,并在充电器上引进最新的氮化镓技术,实现在提高充电器功率的同时,将体积控制得更小巧。 而这里其实有一个有趣的事实: 这项为5G手机带来
- 关键字:
氮化镓 GaN
- 根据阿里巴巴达摩院发布的《2021十大科技趋势》预测的第一大趋势是“以氮化镓(GaN)、碳化硅(SiC)为代表的第三代半导体迎来应用大爆发”。达摩院指出,近年来第三代半导体的性价比优势逐渐显现,正在打开应用市场:SiC元件已用作汽车逆变器,GaN快速充电器也大量上市。半导体材料演进图:资料来源:Yole, 国盛证券相对于第一代(硅基)半导体,第三代半导体禁带宽度大,电导率高、热导率高,其具有临界击穿电场高、电子迁移率高、频率特性好等特点。氮化镓(GaN)是最具代表性的第三代半导体材料,成为高温、高频、大功
- 关键字:
氮化镓 GaN
- 氮化镓充电器频繁的出现在我们的视线中,那么氮化镓充电器与普通充电器有什么不一样呢?我们一起来看看。 氮化镓是氮和镓的化合物,是一种直接能隙的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中氮化镓材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的
- 关键字:
氮化镓 GaN 充电器
- 2022年3月21日Power Integrations宣布推出节能型HiperLCS™-2芯片组以及集成750V PowiGaN™氮化镓开关的HiperPFS™-5系列功率因数校正(PFC)IC。 据了解,HiperLCS-2双芯片解决方案由一个隔离器件和一个独立半桥功率器件组成。其中的隔离器件内部集成了高带宽的LLC控制器、同步整流驱动器和FluxLink™隔离控制链路。而独立半桥功率器件则采用Power Integrations独特的600V FREDFET,具有无损耗的电流检测,同时集成有上
- 关键字:
PI HiperLCS-2芯片组 HiperPFS-5 GaN
- 半导体制造商ROHM已建立150V耐压GaN HEMT GNE10xxTB系列(GNE1040TB)?的量产体制,该系列产品的闸极耐压(闸极-源极间额定电压)高达8V,非常适用于基地台、数据中心等工控设备和各类型IoT通讯装置的电源电路。 EcoGaN首波产品 GNE10xxTB系列?有助基地台和数据中心实现低功耗和小型化一般来说,GaN组件具有优异的低导通电阻和高速开关性能,有助降低各种电源功耗和实现外围组件小型化。但其闸极耐压很低,因此在开关工作时的组件可靠性方面尚存在课题。针对该课题,RO
- 关键字:
SiC GaN ROHM
- 全球知名半导体制造商ROHM(总部位于日本京都市)已确立150V耐压GaN HEMT*1“GNE10xxTB系列(GNE1040TB)”的量产体制,该系列产品的栅极耐压(栅极-源极间额定电压)*2高达8V,非常适用于基站、数据中心等工业设备和各种物联网通信设备的电源电路。一般而言,GaN器件具有优异的低导通电阻和高速开关性能,因而作为有助于降低各种电源的功耗和实现外围元器件小型化的器件被寄予厚望。但其栅极耐压很低,在开关工作时的器件可靠性方面存在问题。针对这一课题,ROHM的新产品通过采用自有的结构,成功
- 关键字:
ROHM 150V GaN HEMT
- 1. 提前预定五年产能,全球半导体硅片进入黄金期!根据SEMI发布的数据显示,2021年全球硅片的出货量同比增加了14%,总出货量达到141.65 亿平方英寸(MSI),收入同比增长了13%,达到126.2亿美元。 目前,包括长江存储和武汉新芯等客户,都与沪硅旗下的上海新昇签订了2022年至2024年的长期供货协议。其中,2022年1-6月预计交易金额分别为1.55亿元、8000万元,而2021年1-11月上述公司的交易金额分别为1.43亿元、1.03亿元。2. 2021 年中国集成电路销售额首
- 关键字:
半导体 GaN 芯片 产能
rf gan介绍
您好,目前还没有人创建词条rf gan!
欢迎您创建该词条,阐述对rf gan的理解,并与今后在此搜索rf gan的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473