首页  资讯  商机   下载  拆解   高校  招聘   杂志  会展  EETV  百科   问答  电路图  工程师手册   Datasheet  100例   活动中心  E周刊阅读   样片申请
EEPW首页 >> 主题列表 >> 英飞凌

英飞凌 文章 进入英飞凌技术社区

驱动电路设计(一)—— 驱动器的功能综述

  • 驱动电路设计是功率半导体应用的难点,涉及到功率半导体的动态过程控制及器件的保护,实践性很强。为了方便实现可靠的驱动设计,英飞凌的驱动集成电路自带了一些重要的功能,本系列文章将详细讲解如何正确理解和应用这些驱动器的功能。每一个功率开关都需要一个驱动器,功率开关在系统中会承受高压大电流,如何使得功率半导体优雅地开通和关断,驱动电路功不可没。另外,驱动电路还需要承担功率开关保护的重任,检测短路工况,快速柔和地关断。驱动器的大类功率半导体驱动是一种值得研究的技术,驱动对象不同、应用系统要求不同,对驱动电路的要求也
  • 关键字: 英飞凌  驱动电路设计  

英飞凌成立新业务部门加强传感器和射频产品组合, 推动盈利增长

  • 2月13日消息,全球功率系统、汽车和物联网领域的半导体领导者英飞凌科技股份公司宣布成立一个新的业务部门,将当前的传感器和射频(RF)业务合并成一个专门的部门,从而推动公司在传感器领域的发展。新成立的传感器单元和射频(SURF)业务部门隶属于电源与传感系统(PSS)事业部,并涵盖之前的汽车和多市场传感与控制相关业务。通过整合在传感器和射频技术领域的优势,英飞凌充分利用成本与研发的协同效应,加速创新并为客户创造更大的价值,从而增强自身的竞争力和产品上市策略。预计到 2027 年,传感器和射
  • 关键字: 英飞凌  电源  传感  

英飞凌成立新业务部门加强传感器和射频产品组合

  • 全球功率系统、汽车和物联网领域的半导体领导者英飞凌科技股份公司近日宣布成立一个新的业务部门,将当前的传感器和射频(RF)业务合并成一个专门的部门,从而推动公司在传感器领域的发展。新成立的传感器单元和射频(SURF)业务部门隶属于电源与传感系统(PSS)事业部,并涵盖之前的汽车和多市场传感与控制相关业务。英飞凌科技传感器单元与射频业务部门负责人Thomas Schafbauer博士通过整合在传感器和射频技术领域的优势,英飞凌充分利用成本与研发的协同效应,加速创新并为客户创造更大的价值,从而增强自身的竞争力和
  • 关键字: 英飞凌  传感器  射频  

技术洞察 | 迈向更绿色的未来:GaN技术的变革性影响

  • 作者Nihit Bajaj 英飞凌科技 GaN产品高级总监校对宋清亮 英飞凌科技大中华区消费、计算与通讯业务高级首席工程师过去几十年间,人口和经济活动的快速增长推动了全球能源消耗的稳步增长,并且预计这一趋势还将持续。这种增长是线下与线上活动共同作用的结果。因此,数据中心的快速扩张显著增加了全球电力需求。据估计,2022年全球数据中心耗电量约为240-340太瓦时(TWh)。近年来,全球数据中心的能源消耗以每年20-40%的速度持续增长 [1] 。图1:1910年以来
  • 关键字: 英飞凌  GaN  

英飞凌2025财年开局略优于预期,因汇率影响上调全年业绩展望

  • ●   2025财年第一季度:营收为34.24亿欧元,利润为5.73亿欧元,利润率 16.7%。●   2025财年第二季度展望:假设欧元兑美元汇率为1:1.05,预计营收约为36亿欧元。在此基础上,利润率预计为14%~16%左右。●   2025财年展望:假设欧元兑美元汇率为1:1.05(之前为1:1.10),预计营收将与上一财年持平或略有增长(之前预测为较前一年度略有下降)。调整后的毛利率预计在40%左右,利润率为14%~19%。预计投资额约
  • 关键字: 英飞凌  2025财年  

英飞凌推出基于MEMS的集成式先进超声波传感器

  • 英飞凌科技股份公司在开发电容式微机械超声波传感器(CMUT)技术方面取得重大进展。凭借这项技术,公司推出首款高度集成的单芯片解决方案,该方案基于微机电系统(MEMS)的超声波传感器,拥有更小的占板面积以及更强大的性能和功能,可广泛用于开发新型超声波应用和改进消费电子、汽车工业与医疗技术领域的现有应用。英飞凌科技高级总监Emanuele Bodini表示:“英飞凌的超声波技术可以实现很高的信噪比和集成度,因此我们认为该器件代表着行业的一大突破。我们希望利用这项技术开发出一个服务于不同行业多种应用场景的产品平
  • 关键字: 英飞凌  MEMS  超声波传感器  

功率器件的热设计基础(一)---功率半导体的热阻

  • / 前言 /功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。散热功率半导体器件在开通和关断过程中和导通电流时会产生损耗,损失的能量会转化为热能,表现为半导体器件发热,器件的发热会造成器件各点温度的升高。半导体器件的温度升高,取决于产生热量多少(损耗)和散热效率(散热通路的热阻)。IGBT模块的风冷散热
  • 关键字: 英飞凌  功率器件  热设计  热阻  

功率器件的热设计基础(二)---热阻的串联和并联

  • / 前言 /功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章将比较系统地讲解热设计基础知识,相关标准和工程测量方法。第一讲 《功率器件热设计基础(一)----功率半导体的热阻》 ,已经把热阻和电阻联系起来了,那自然会想到热阻也可以通过串联和并联概念来做数值计算。热阻的串联首先,我们来看热阻的串联。当两个或多个导热层依次排列,热量依次通过
  • 关键字: 英飞凌  功率器件  热设计  串联  并联  

功率器件热设计基础(三)----功率半导体壳温和散热器温度定义和测试方法

  • / 前言 /功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章会联系实际,比较系统地讲解热设计基础知识,相关标准和工程测量方法。功率半导体模块壳温和散热器温度功率模块的散热通路由芯片、DCB、铜基板、散热器和焊接层、导热脂层串联构成的。各层都有相应的热阻,这些热阻是串联的,总热阻等于各热阻之和,这是因为热量在传递过程中,需要依次克服每一个热阻,所以总热阻就是
  • 关键字: 英飞凌  功率器件  热设计  散热器  

功率器件热设计基础(四)——功率半导体芯片温度和测试方法

  • / 前言 /功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。芯片表面温度芯片温度是一个很复杂的问题,从芯片表面测量温度,可以发现单个芯片温度也是不均匀的。所以工程上设计一般可以取加权平均值或给出设计余量。这是一个MOSFET单管中的芯片,直观可以看出芯片表面温度是不一致的,光标1的位置与光标2位置温度
  • 关键字: 英飞凌  功率器件  热设计  温度测试  

功率器件热设计基础(五)——功率半导体热容

  • / 前言 /功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。热容热容 C th 像热阻 R th 一样是一个重要的物理量,它们具有相似的量纲结构。热容和电容,都是描述储存能力物理量,平板电容器电容和热容的对照关系如图所示。平板电容器电容和热容
  • 关键字: 英飞凌  功率器件  热设计  功率半导体热容  

功率器件热设计基础(七)——热等效模型

  •  前言 /功率半导体热设计是实现IGBT、SiC MOSFET高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。有了热阻热容的概念,自然就会想到在导热材料串并联时,就可以用阻容网络来描述。一个带铜基板的模块有7层材料构成,各层都有一定的热阻和热容,哪怕是散热器,其本身也有热阻和热容。整个散热通路还包括导热脂、散热器和环境。不同时间尺度下
  • 关键字: 英飞凌  功率器件  热设计  热等效模型  

功率器件热设计基础(九)——功率半导体模块的热扩散

  • / 前言 /功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。任何导热材料都有热阻,而且热阻与材料面积成反比,与厚度成正比。按道理说,铜基板也会有额外的热阻,那为什么实际情况是有铜基板的模块散热更好呢?这是因为热的横向扩散带来的好处。热横向扩散除了热阻热容,另一个影响半导体散热的重要物理效应为热的横向传
  • 关键字: 英飞凌  功率器件  热设计  热扩散  

功率器件热设计基础(十)——功率半导体器件的结构函数

  • / 前言 /功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。为什么引入结构函数?在功率器件的热设计基础系列文章 《功率半导体壳温和散热器温度定义和测试方法》 和 《功率半导体芯片温度和测试方法》 分别讲了功率半导体结温、芯片温度、壳温和散热器温度的测试方法,用的
  • 关键字: 英飞凌  功率器件  热设计  结构函数  

功率器件热设计基础(十三)——使用热系数Ψth(j-top)获取结温信息

  •  前言 /功率半导体热设计是实现IGBT、碳化硅SiC高功率密度的基础,只有掌握功率半导体的热设计基础知识,才能完成精确热设计,提高功率器件的利用率,降低系统成本,并保证系统的可靠性。功率器件热设计基础系列文章会比较系统地讲解热设计基础知识,相关标准和工程测量方法。驱动IC电流越来越大,如采用DSO-8 300mil宽体封装的EiceDRIVER™ 1ED3241MC12H和1ED3251MC12H 2L-SRC紧凑型单通道隔离式栅极驱动器,驱动电流高达+/-18A,且具有两级电压变化率控制和有
  • 关键字: 英飞凌  功率器件  热设计  热系数  
共1800条 8/120 |‹ « 6 7 8 9 10 11 12 13 14 15 » ›|

英飞凌介绍

英飞凌科技公司于1999年4月1日在德国慕尼黑正式成立,至今在世界拥有35,600多名员工,2004财年公司营业额达71.9亿欧元,是全球领先的半导体公司之一。作为国际半导体产业创新的领导者,英飞凌为有线和无线通信、汽车及工业电子、内存、计算机安全以及芯片卡市场提供先进的半导体产品及完整的系统解决方案。英飞凌平均每年投入销售额的17%用于研发,全球共拥有41,000项专利。自从1996年在无锡建立 [ 查看详细 ]

相关主题

热门主题

  英飞凌    树莓派    linux   
关于我们 - 广告服务 - 企业会员服务 - 网站地图 - 联系我们 - 征稿 - 友情链接 - 手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
备案 京ICP备12027778号-2 北京市公安局备案:1101082052    京公网安备11010802012473