新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 一种长序列小波变换快速算法的DSP实现

一种长序列小波变换快速算法的DSP实现

作者:吕新华,何川平,李早华,潘明忠时间:2008-09-08来源:中电网收藏

  1 引 言

本文引用地址:http://www.eepw.com.cn/article/87788.htm

  由于具有良好的时频分析特性,已经广泛应用于各种信号分析领域。由于算法的复杂性,如果直接计算,所需内存较大,耗时较长。尽管当今处理器芯片运算速度得到了大幅度的提高,但仍然在实时性上不能满足要求。为了简化计算过程,人们相继设计了一系列的快速算法来计算小波变换,以降低其运算次数。

  小波变换在大多数具体应用中主要是在线信号的实时分析处理,微机和通用的在运算速度上难以适应信号实时、高精度处理的要求。数字信号处理器()就是为了适应这种需求而开发的。美国TI公司是全球最大的供应商,其生产的TMS320C55x系列16位定点芯片具有、高性能等特点,具有广泛的应用领域,本文应用该系列DSP芯片,将文献[2]提出的小波变换快速算法用C语言开发加以实现,解决了小波变换实时、高精度处理的要求。

  2 小波分解过程的DSP实现

  小波分解过程中算法实现的数据结构存储和寻址方式如图1所示。

  小波分解过程中C语言算法实现的伪代码如下:

  下面分别对伪代码中各个子程序模块的具体实现进行分析。

  2.1 边界延拓模块

  数据边界延拓程序模块的实现:

  定义一个数据地址指针pSrc始终指向载人的源数据头地址,即pSrc=Layer1Data+M-1,在源数据的首尾各对称延拓M-1个点。该模块的C语言实现代码如下:

  2.2 数据搬移模块

  从源数据区搬送数据到计算区的程序模块实现:定义一个临时地址指针pTemp1指向扩展后的数据首地址,即:pTemp1=pSrc-M+1,SegNum为长序列分段数,将数据从数据源区分段搬送到计算区,并将16 b数据扩展为32 b,通过对虚部填零,组成复数输入数据数组signal,该模块C语言实现代码如下(i为分段标记,N为分段圆周卷积长度):

  2.3 基于圆周卷积的线性卷积模块

  用圆周卷积计算signal和分解滤波器组dec_filter的线性卷积out_buffer,该模块的C语言实现代码如下:

  2.4 结果保存模块

  将计算区的结果保存到目标区的程序模块实现:将out_buffer去掉前面M-1个复数,后面N-M+1个复数只取实部,即只取低频分量,对取出的实部乘以比例系数,这里采用的是小数乘法,然后再取前16 b,将结果存到数据存储目标区Layer2Data2,定义目标区存储的首地址指针为pDest=Layer2Data+M-1,然后定义临时数据指针pTemp2=pDest,该模块C语言实现代码如下:

  将保存在目标区内的数据减采样一半,仍旧保存在目标区内,该模块的C语言代码如下:

  3 小波重构过程的DSP实现

  首先对数据源区要重构的低频、高频数据分量进行上采样,将上采样后的数据存到另外一个目标数据缓冲区,该模块的C语言程序代码如下:

  交换数据指针,将计算结果存到另一区,对上采样后的数据进行边界延拓,然后应用重叠保留法计算扩展后的数据和重构滤波器组的线性卷积,这两个模块的实现同分解过程。惟一有所区别的是,在保存数据时,每一层重构时的第一个分段前面要去掉的个数要多一点,模块的C语言代码如下:

  4 结 语

  由于小波变换算法的复杂性,微机和通用的在运算速度上难以实现小波变换的实时性要求。定点DSP具有、高性能的特点,本文结合TI公司的16位定点DSP说明了小波变换快速算法的具体实现,解决了小波变换实时、高精度处理的要求。



评论


相关推荐

技术专区

关闭