新闻中心

EEPW首页 > 测试测量 > 设计应用 > 基于Flotherm分析的光伏逆变器的散热设计

基于Flotherm分析的光伏逆变器的散热设计

作者: 时间:2013-05-13 来源:网络 收藏

在Command Center中输入优化的相关参数:肋高40~65 mm,肋片厚度1~4 mm,a为14~20 mm,肋间距5~7 mm。目标函数定义为编号A~E的IGBT模块的壳温。同时监视散热器的基板温度及其进出口空气温度。关键器件IGBT散热器设计优化参数如下:散热器包络体积为450x 200x76.5 mm,a=16.5 mm,肋片数为30,肋高60 mm,肋片厚度1.2 am,平均肋间距6.345 mm。
ICBT模块功率密度较高,散热空间有限,在散热器两端加装风机以强冷方式散热。其次封装在箱体背部下方的7个电感总热耗为210 W,利用风机鼓风在电感附近造成湍流气流强化散热。
基于上述热耗,确定强制风冷总热耗Wtot=600 W,估计进出风口温升△T≈14℃,由工程经验可得系统所需有效风量为:
q=1.76Wtot/△T (5)
算出q=75 CFM,根据箱体空间结构选择大小8 038的轴流风机对此系统进行冷却,假定此风机工作在效率最大点:静压85 Pa,风量45 CFM。评估此系统至少需两台风机并联。通过系统仿真、筛选,此方案中5个功率模块共用一块散热器,上下机壳开孔率及进出风口开孔率均为60%。
基于软件仿真,对照图1中功率元器件编号,5个ICBT模块壳温由A~E依次为82.5 ℃,84.8 ℃,86.6 ℃,92.7℃,93.8 ℃;7个电抗器编号1~7,壳温分别为65.7 ℃,65.4 ℃,65.2℃,65.4℃,64.8℃,64.7 ℃,65.2 ℃。
图2为CFD求解过程中监控点温度随迭代步数的收敛变化趋势。7个电抗器处于右侧两个风机鼓风造成的湍流区域中,其冷却效果得到强化。

本文引用地址:https://www.eepw.com.cn/article/192796.htm

e.JPG


IGBT模块中集成的IGBT芯片、二极管芯片和场效应管的结温为:
Tj=Tc+PTDPRjc (6)
式中:PTDP为IGBT单芯片的最大热耗;Rjc为芯片结点至外壳的热阻,该值可在厂商提供的器件资料中查询到。
由于评估的IGBT模块集成技术、内部布局为厂家机密文件,因此很难准确得到模块内每个芯片的准确热耗、结温、壳温及空间坐标。由于模块集成度较高,且热源(主要是IGBT,二极管,Buck)分布较均匀,工程仿真热模型采用均匀体积热源等效实际热源,可近似得到功耗器件IGBT模块的壳温如表2(只统计同规格模块中仿真温度最大的值,且降额设计壳温参考国军标Ⅱ级降额标准,系数0.8)。可见,IGBT模块A~E的壳温均未超过设定的降额壳温,且有适当余量。电感Lin,Lout,L1~L7壳温均远低于降额设计温度,冗余,均可长期安全可靠工作。

f.JPG



3 实验
在某地区实验温度为60℃的高温箱内,对样机进行满载热测试,数据如表3所示。

g.JPG


通过对比表2,3可见,实测壳温均低于仿真值。考虑海拔对空气换热系数hc的影响,有:
hch/hcl=(ph/pl)0.5 (7)
式中:hch,hcl分别为高空和海平面的空气换热系数;ph,pl分别为高空和海平面的大气压力。
该地区十月份ph=97 470 Pa,Pl=101 325 Pa,计算得hch=0.98hcl。牛顿冷却公式为Q=hcA△T,假设换热量Q不变,可推测温升增加到原来的1.02倍。以表3中A~C为例,加入海拔因素的修正壳温Tx=60+(82.1-60)/1.02=81.7℃。对比表2,3,加入海拔修正后,仿真壳温与实测修正后的壳温最高仅差4.9℃,验证了基于软件的电力电子设备的优势和可靠度。

4 结论
对于电力电子设备的问题,采用基于分析的散热设计方法能较准确评估实际工况中的温度、速度、压力场分布及风机工作点,从而帮助设计人员快速确定最佳设计方案。此外,运用Flotherm热分析手段进行多方案筛选并确定的最优方案能有效指导产品热设计,前期规避热风险,提高产品可靠性和市场竞争力,同时可以缩短研发周期,降低开发成本,有效解决实验研究中开发周期长,成本高的问题。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭