基于FPGA的数字选频器设计
D/A转换芯片选用AD9779,AD9779属于TxDAC系列高性能、低功耗CMOS数/模转换器的第二代16b分辨率产品。所有器件都采用相同的接口选项、小型封装和引脚排列,因而可以根据性能、分辨率和成本的要求,向上或向下兼容选择适合的器件。AD9779提供出色的交流和直流性能,同时支持最高1000 MSPS的转换速率。由于AD9779输出为差分信号,故需要通过变压器转成单端信号。变压器的选型需要考虑回波损耗、带宽、平衡性等参数,此设计中变压器选用TC1-1T。
2.4 系统控制设计
系统控制是由16位单片机MSP430F147来实现的,系统控制框图如图5所示。本文引用地址:https://www.eepw.com.cn/article/190500.htm
2.4.1 状态指示
芯片工作状态的显示是由芯片的状态管脚在FPGA上通过LED指示实现的。其中AD6655通过寄存器0x104[3:1]控制管脚FDA[0:3]和FDB[0:3]分别指示A和B通道的ADC快速幅度与FS标称输入幅度的相对关系。AD9779直接通过它的PLLLOCK管脚指示PLL是否已经锁定。AD9516是通过配置寄存器0X1B,0X1A,0X17分别控制管脚2,3,6上显示VCO,PLL,HoldOver的状态。
2.4.2 芯片配置
各芯片工作状态的配置是通过MSP430的SPI串行接口实现的,且MSP430的SPI是三线的。其中MCU侧的SPI是复用的,对各芯片的选择是通过GPIO控制各芯片上的SPI的片选位。各芯片SPI的时钟是复用的MCU主机侧的SPI时钟信号。
对AD6655寄存器的配置是通过其自带的三线SPI实现的。AD6655的SPI接口中数据输入/输出共用同一根线,这与MSP430的标准四线全双工SPI是不同的,要通过一个专门的转换电路实现两条单向的SI/SO线和双向的SDIO线的转换。AD6655的SPI片选信号通过MSP430的GPIO控制,没有专门的硬件复位,只能使用软件控制寄存器实现复位。
对AD9779和AD9516的寄存器配置通过其分别的SPI功能管脚实现。两种芯片的SPI都是既可以使用三线,也可以使用四线。二者的SPI片选使能和芯片复位也是分别通过MSP430的GPIO来控制。
2.4.3 芯片复位、中断控制及其他
各芯片的复位是通过MSP430的GPIO控制各芯片的RESET引脚实现的,这样可以实现软件复位,同时在各芯片的RESET引脚上加一个开关实现各芯片独立的开关控制的硬件复位。
FPGA连接MSP430的五个外部中断。MSP430通过LED0~4指示状态。JTAG口下载程序实现硬件调试。RS 485串口实现MSP430与PC机的串行通信。
3 测试结果
本数字选频器采用Agilent Technologies N5230A网络分析仪进行扫频测试。通过软件设定该数字选频器的下行模块参数如表1所示。
评论