一种基于开关电容技术的锁定放大器设计
利用开关电容实现相关算法的电路如图5所示。开关控制信号由信号源输出的方波信号提供,用CD4052两片模拟开关来控制开关电容和积分电容充放电,A2是第一级BPF电路,U0接入后续电路。
3 数据分析
测量用的微弱信号通过电阻分压获得。在电路调试中选择电容C1、C2的值均为0.1 μF,开关控制信号的频率为1 kHz,输入的电流为微安级,电路的输入输出关系如图6所示。图6(a)表示直流测量数据,图6(b)表示交流测量数据(电容为O.1μF,控制信号和输入信号的频率均为1 kHz,控制信号是方波信号,输入信号是正弦信号)。
由图6可知,电路的线性度较好,说明本方法是可行的。改变开关电容和积分电容的大小,会改变电路灵敏度的大小,但不会改变线性度和稳定性。该电路结构简单,在降低噪声的同时,可以将微弱信号放大很多倍,并变成与其对应的直流信号,便于采集和显示。积分器输出电压不能太大,否则波形易失真,会引起测量误差。为了便于后续处理,通过改变BPF的级数和放大倍数以增加整体电路的放大倍数,从而能够测量更小的微弱信号。
4 结论
本文利用开关电容和积分器相结合实现了锁定放大器的功能。该电路结构简单,线性度和稳定性较好。不但可以降低噪声,而且将微弱信号放大很多倍,并变成与其对应的直流信号,以便采集和显示。对于皮安级电流,采用本相关器,可以使输出电压达到微伏级,通过BPF后可以达到伏特级。
评论