改进的单级功率因数校正AC/DC变换器的拓扑综述
辅助开关Sr的驱动波形如图11所示,当输入电压在零附近时,辅助开关Sr导通,使附加绕组N1短路,从而改善了输入电流的波形,减少了输入电流的谐波含量,提高了功率因数。
当输入电压大于某一值时,辅助开关管Sr关断;其余的工作情况与图8和图9相似。辅助开关Sr在输入电压很小时才导通工作,其余时间不工作。因此,流过Sr的电流很小,Sr的功率损耗很小。由图11知,辅助开关的工作频率为交流电源频率的两倍。故在整个工作期间,Sr的开关损耗很小。另外,辅助开关Sr的控制电路也很简单。由上述分析知,带低频辅助开关的单级PFC变换器减小了输入电流的谐波含量;提高了功率因数和效率;降低了电容电压。
图11 辅助开关Sr的驱动波形
辅助开关Sr也可以放在其他位置,得到不同的拓扑结构,如图12所示。图12(a)所示的电路使L1旁路,也就是说,输入电压在零附近时,导通开关Sr,使L1短路,电路工作在DCM下,从而增加了输入电流,这种方法不能消除输入电流的死角。因此,与图10的电路相比,图12(a)的电路的输入电流的畸变更大。Sr另外一种实现方式如图12(b)所示,使L1和N1都旁路,也就是说,输入电压在零附近时,导通开关Sr,使L1和N1都短路。这种方法可以完全消除输入电流的死角,提高功率因数。但是,与图10的电路相比,图12(b)电路中的储能电容电压更高。因为,图12(b)电路有一小部分时间工作在DCM下。另外,该方法也可以应用在其他的DCM/CCM单级PFC变换器中,如图13所示的带低频辅助开关的DCM单级PFC变换器。
(a) 使L1旁路
(b) 使L1和N1都旁路
图12 Sr不同位置的实现方式
图13 带低频辅助开关的DCM单级PFC变换器
3.4 带有源箝位和软开关的单级PFC变换器
单级隔离式PFC变换器与普通的DC/DC变换器相比有电压、电流应力高,损耗大的缺点。因此,采用有源箝位和软开关等先进技术来减小单级隔离式PFC变换器的开关损耗和电压应力。
带有源箝位和软开关的单级隔离式PFC变换器[10]如图14所示。S为主开关,Sa为辅助开关。Cc为箝位电容,CB为储能电容,Cr为开关S和Sa的寄生电容以及电路中其他的寄生电容之和。Boost单元工作在DCM下,保证有高的功率因数;为避免DCM有较高的电流应力,Flyback设计为CCM。采用有源箝位和软开关技术限制了开关的电压应力,再生了储存在变压器漏感中的能量,为主开关和辅助开关提供了软开关条件,减少了开关损耗,提高了变换器的效率。主开关与辅助开关用同一个控制/驱动电路,进一步提高了电路的实用性。
图14 带有源箝位和软开关的单级隔离式PFC变换器
4 结语
单级PFC变换器由于具有电路简单,成本低,功率密度高的优点,而在中小功率场合得到了广泛的应用。通过分析单级PFC的拓扑结构,指出了它存在的一些问题,如储能电容电压随输入电压和负载的变化而变化,在输入高压或轻载时,电容电压可能达到上千伏;变换器的效率低;开关损耗大;有源开关的电压、电流应力高。而对用变压器绕组实现负反馈,用软开关技术,用低频辅助开关以及并联PFC等方法来降低电容电压,开关损耗,减少电流谐波含量和提高效率等问题进行了综述,并分析了几种改进拓扑的工作原理,比较了它们的优缺点。
评论