新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 提高物流跟踪系统定位精度的滤波算法

提高物流跟踪系统定位精度的滤波算法

作者: 时间:2009-01-12 来源:网络 收藏

简便起见,先考虑整周模糊度为常数时的矩阵向量,动态模型采用常速模型。


理想条件下,卡尔曼是线性无偏最小方差估计。在实际应用中,由于的状态估计值可能存在偏移,且估计误差的方差也可能很大,远远超出了按计算公式计算的方差所定出的范围,这在理论中称为滤波的“发散现象”。当滤波发散时,就完全失去了滤波的最优作用,在实际中必须抑制发散现象。
2.2 强
为保证滤波器可靠收敛,考虑通过牺牲一定的换取滤波稳定性――例如增大的过程噪声和观测噪声的方差阵――这样就将许多未建模的误差包含进去,使变得简单可靠。参考文献中提出的强就是依据这种思想,将状态估计误差的协方差阵乘以加权系数λk+1,如式(7)所示。这种方法具有很强的突变状态能力,并在滤波器达到稳态时保持这种能力,对初值和噪声统计特性的敏感性也比较低。


式(9)和式(10)中的αi值是由先验知识来确定的。可以看出,当状态发生突变时,估计误差Yk+1YTk+1的增大将引起误差方差阵v0(k+1)增大;相应地,加权系数λi(k+1)增大,滤波器的跟踪能力增强,可靠性。但是这种方法的缺点是破坏了滤波器的最优条件,使滤波结果产生一定幅度的波动。运用上节的粒子运动模型,通过仿真分析强跟踪算法。在仿真的过程中,突然将和观测噪声改变,对比两种算法对噪声改变的适应性。



评论


相关推荐

技术专区

关闭