新闻中心

EEPW首页 > 设计应用 > 基于PCI Express总线的R-D算法实时成像系统设计

基于PCI Express总线的R-D算法实时成像系统设计

作者:李 燕,王 倩,王虹现,邢孟道时间:2008-06-27来源:现代电子技术收藏

  算法是成像中应用最广的一种算法,因其具有原理直观、实现方便等优点在实际中有广泛的应用。算法的基本特点是运动补偿、参数估计比较灵活,距离向处理和方位向处理分开,运算既是并发的、又是流水的,同时他又具有成像本身的大运算量、大存储量等特点,故 信号处理机在系统结构上有其自身的特点。本文在分析R-D SAR信号处理特点的基础上探讨R-D SAR成像系统的设计,整个系统利用当前流行的总线进行数据通信,提高了数据传输能力。

本文引用地址:http://www.eepw.com.cn/article/84921.htm

  1 R-D算法流程及特点

  距离-多普勒成像虽然有多种参数估计方法,各自的成像算法又有很大的差异,但基本运算和算法流程差别不大,如图1所示。

  其中,(2)~(6)表示成像处理。在(2)中一般采用dechirp或者匹配滤波的方法。如果采用dechirp方法,要生成一幅8 192×8 192点的图像,需要在距离向处理中进行8 192次8 192点FFT运算;而同样大小的图像如果采用匹配滤波的方法则需要16 383×8 192点FFT运算,这还没有包括运动补偿和乘以解调频函数(dechirp方法)或乘以脉压匹配函数(匹配滤波方法)中的乘法运算。图中(3)就是专门进行距离向处理所必需的参数估计、运动补偿因子计算以及解调频函数或脉压匹配函数的计算。这个过程往往需要用到预处理完成后的部分数据甚至全部数据,有时还要用到中间结果的部分数据甚至全部数据。完成距离向处理后,为了在方位向处理时数据能够在存储器中按方位向连续存放以加快存取速度,要将数据转置(4)(这里原始数据按距离向连续存放)。方位向处理与距离向处理类似,但方位压缩(5)一般采用匹配滤波的方法,因为方位回波的带宽比较宽。而这期间也要由(6)来专门估计方位向参数,计算相位校正函数和方位向脉压匹配函数。

  由此总结R-D SAR成像信号处理的特点如下:

  巨大的存储量 显然,仅存一幅8 192×8 192点复图像所需要的存储量约为512 MB,如果乒乓工作,那么处理器的存储能力需要超过1 GB,显然应该用SDRAM。

  巨大的运算量因距离向和方位向都要进行脉冲压缩,故运算量非常大。以8 192×8 192点图像为例,若两个方向都采用匹配滤波方法,一共需要进行32 768次8 192点FFT运算;若采用基2方法,仅FFT运算就需要1 280万次复数乘法,3 432万次复数加法。设合成孔径时间是5 s,则在一个合成孔径时间内算出一幅图像要求处理器的有效运算能力在10亿FLOPS以上,因此必须采用多处理器结构。

  处理的并发性和流水性 原始数据一般是以回波到达顺序进入信号处理机,这样在距离向处理时可采用流水方式进行,流水线以子孔径为单位分级。方位向的参数估计往往需要整个孔径长度的方位回波,所以方位向处理要等到在整个孔径上完成距离向处理后才开始并发执行。因此不仅要考虑整体的流水操作,还要考虑距离向处理和方位向处理的差异。 巨大的通信数据率 在进行参数估计和计算校正函数以及匹配函数时往往要用到数据的部分或全部样本,由于运算集中在计算FFT上,处理器能够花费在参数估计上的时间已非常有限,读取数据的时间就更少了,这就要求在处理器的各模块之间有良好的拓扑结构和很高的数据传输速率。

  2 总线技术

  2.1 总线简介

  在基于PCI总线的PC世界或工控领域里,随着网络流量的不断提高,PCI和PCI-X的多点并行架构的瓶颈越来越突出,而PCI Express架构具有更高的性能,可以突破此类瓶颈的限制。PCI Express架构采用串行输入/输出结构,每条通道在每个方向上的发送和接收数据速率高达2.5 Gb/s,最新的PCI Express 2.0的数据速率更是高达5 Gb/s,具有更好的可扩展性,可提供更高的带宽。由于PCI和PCI-X总线采用共享多点并行总线架构,所以当总线中的插槽和设备数量增加时,有限的总线资源会被多个设备共享,于是带宽就会相应的下降。PCI和PCI-X采用平行的、多点下传的连接架构,很容易产生串扰现象,此外所有的信号线必须完全等长,否则无法将信号同步传到另一端,而会产生信号扭曲。这些问题让PCI的时钟频率难以提升,电压也难以下降,造成速度提升上的发展限制。而PCI Express采用序列的、点对点的连接架构,收发数据差分传输,可以避免信号不同步并且减少干扰。PCIExpress带宽随着通道数的增加而增加,如表1所示。

  PCI Express是全新第三代I/O串行总线标准,其性能超越了以前的PCI标准。但是PCI、PCI-X与PCI Express仍将在未来的一段时间内共存。PCI Express可提供专用的、高性能的、可扩展的带宽总线和卓越的以太网性能,其功能远远超越了PCI和PCI-X的共享多点架构。从软件上看,采用PCI-Express架构可以兼容所有为PCI设备编写的软件。

  在信号处理系统设计中,要突破带宽的限制,PCIExpress总线是一个不错的选择。在PCI Express点到点的结构中,每个设备都有一个专用连接而不必共享带宽。一种典型的通过PCI Express互连的信号处理架构就是每个设备都与一个系统控制模块相连。值得注意的足,系统控制模块必须具备对串行数据进行交换的能力。

  2.2 支持PCI Express总线的机箱

  在工控机箱领域,充分采纳和沿用了AT-CA的各项优点,把ATCA的AMC模块(Advanced Mez-zanine Card)作为系统的基本配置单元,具有更小的体积、更紧凑的结构和相对较低的系统成本,所以采用MicroT-CA架构的机箱是一个好的选择。

  是一个完全模块化的系统平台,主要包括AMC模块、MCH模块、电源模块、高速背板、机箱和风扇等,其结构如图2所示。

  AMC是MicroTCA的基本功能模块,他有6种标准尺寸,这里采用148.8 mm*13.88 mm*181.5 mm的标准。用AMC可以实现数据处理、数据存储、数据通信和数据I/O功能。与CPCI系统的PMC模块相比,AMC在结构、功能、性能、互连方式和扩展能力等方面都有很大优势。MCH(MicroTCA Controller & Hub)是MicroTCA的系统控制、管理和数据交换模块。每个MCH可以对12个AMC提供数据交换和管理功能,每个系统最多可有4个MCH通过更新通道互连实现多达48个AMC的数据交换和管理。每个AMC最多有21个可配置的高速数据接口,每个MCH最多有60个可配置的高速数据接口,这些接口通过MicroTCA背板及MCH的交换网络实现高速数据通信。

  MicroTCA拥有标准化的功能模块、可配置的业务类型、可扩展的背板传输带宽、紧凑的物理结构、灵活的应用方式、梯级化的可靠性设计、较低的开发和应用成本、较少的产品开发时间、更长的产品生命周期。基于这些先进特性,MicroTCA必将得到广泛的应用。

  综合上述优点,我们采用具有MicroTCA架构的提供标准PCI Express总线的工控机。ELMA公司的MicroTCA 7U系统平台符合PICMG规范,提供标准的PCI Express插槽,支持单宽、双宽,半高、全高的AMC模块,采用风冷的冷却方式,具有高级的EMC屏蔽和灵活的组合方式,是我们雷达成像处理系统所需标准机箱的一个不错的选择。机箱的底板采用ELMA公司的14槽MicroTCA背板,他符合MicroTCA.0 R1.0标准规范,具有12个AMC模块、1个电源模块、1个MCH模块,单槽数据带宽可达40 Gb/s,具有高速串行连接器,支持6.25 Gb/s的传输率,此外还有标准的系统管理接口。底板的主要功能是给采集/存储板卡及信号处理板卡提供标准的PCI Express插槽,给板卡供电的同时可以实现主机与板卡间的通信以及板卡间的相互通信。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭