新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > PWM 方式开关电源中IGBT 的损耗分析

PWM 方式开关电源中IGBT 的损耗分析

作者:时间:2018-08-02来源:网络收藏

1 引言

本文引用地址:http://www.eepw.com.cn/article/201808/385116.htm

在任何装置中使用IGBT 都会遇到IGBT 的选择及热设计问题。当电压应力和电流应力这2 个直观参数确定之后, 最终需要根据IGBT 在应用条件下的损耗及热循环能力来选定IGBT。通常由于使用条件不同, 通过IGBT 数据手册给出的参数不能确切得出应用条件下IGBT 的损耗。比较好的方法是通过测量行业确定IGBT 数据手册中参数的测量条件与实际应用环境的差别, 并介绍IGBT 的损耗的简单测量方法。

2 IGBT 参数的定义

厂商所提供的IGBT 开关参数通常是在纯感性负载下测量的, 图1 和图2 分别是IR 公司和TOSHIBA公司测量开关时间的电路和定义开关时间

的波形。其共同特点是: 开通处于续流状态的纯感性负载; 关断有箝位二极管的纯感性负载。有些数据手册还给出了开关过程的能量损失 ,

也是在同样条件下测量的。

对于PWM 方式工作并使用变压器的开关电源, 其工作情况则与之区别很大。图3 是11 kW 半桥型电路及其工作波形, 使用的IGBT 为

GA75TS120U。由波形可见, 电流上升时间tr 约为500 ns, 下降时间t f 约为300 ns。但在数据手册中,GA75TS120U 的电流升降时间分别为t r= 100 ns,t f= 80 ns, 与实际工作情况差异较大。其原因主要在于以下2 个方面:

( 1) 开通时, 图3 中由于变压器漏感的存在, IGBT实际上开通了1 个零电流感性负载, 近似于零电流开通, 电流上升率受漏感充电速度的限制, 因而实际电流上升时间tr 不完全取决于IGBT。而数据手册中给出开通处于续流状态的纯感性负载, 开通瞬间, IGBT 既要承受电感中的电流, 还要承受续流二极管的反向恢复电流, 电流上升率则完全取决于IGBT 的开通速度。

( 2) 关断时, 图3 中的IGBT 并非是在关断1 个纯感性负载, 而是关断1 个R - L 型负载( 变压器及其负载, 从变压器一次侧可等效为R -L 型负载) ,其电流的下降时间t f 要慢于关断带箝位的纯感性负载。并且, 对于纯感性负载, 只有当IGBT 的集电极电压上升到箝位值后, IGBT 的电流才开始下降( 见图1、图2 中波形) , 而电阻-电感性负载时, 集电极电压和电流几乎是同时变化的( 见图3b 波形) 。

由于上述原因, 图3 中IGBT 的t r、t f 均大于给定值, 但这并不意味着损耗的上升, 因为开关损耗还取决于开关过程中电压电流的重叠程度, 而图3中的重迭明显不如图1、图2 中严重, 因而整体损耗将下降。

3 IGBT 损耗的测量

IGBT 损耗的测量实际上是通过对其工作电压和电流的测量和计算而得到的, 因而损耗的测量实质上是电压和电流的测量, 电压和电流测量方法的恰当与否直接影响到测量结果的可信度。

3.1 电流测量

电流测量应使用高频无源电流互感器, 不要使用磁平衡式电流传感器, 前者都有较好的高频响应,后者往往速度较慢, 达不到测量要求。电流传感器要置于被测IGBT 的发射或集电极, 而不要置于主变压器一次侧, 这是2 个不同的电流。这一点可以从图3 IGBT 的关断过程中看出: IGBT1 关断时, VD2 将对关断产生的电压过冲箝位( t1 ~ t 期间) , 在VD2中产生箝位电流。而IGBT1 中电流因转向VD2 而陡降, 此时变压器一次侧电流为IGBT1 和VD2 电流之和, 而非仅IGBT1 中的电流。电流互感器通常由自己制作, 使用前应先检验其性能, 可采用图4 电路进行检验。电阻R1、R2 应使用无感电阻。实际测量时, 互感器初级匝数N 1通常为1 匝, 检验时可适当增加N 1, 这样可以减小检验电流I 而不降低互感器初级的总安匝数, 使检验工作更加容易。比较U2 和U1 波形在延时和畸变方面的区别, 就可确定互感器是否合格。通常U2不能有明显的失真, U2 对U1 的延时应远小于IGBT的开关时间参数。


上一页 1 2 下一页

关键词:

评论


相关推荐

技术专区

关闭