新闻中心

EEPW首页 > EDA/PCB > 设计应用 > 扩频通信芯片STEL-2000A的FPGA实现

扩频通信芯片STEL-2000A的FPGA实现

作者:时间:2011-02-01来源:网络收藏

因其很好的保密性、隐蔽性、抗干扰性以及抗多径效应等优势得到了快速发展和广泛应用。因此,许多公司推出了各种型号的扩频集成电路,典型的有-A,该芯片因外围电路简单而得到了广泛应用。
然而,由于该芯片是基于专用集成电路(ASIC)技术,其内部电路和大部分功能已经固化,对不同的场合缺乏灵活性,对以后系统升级也造成很大困难。而现场可编程门阵列()内部资源丰富,功能强大,并且可重复编程,现场可修改设计,加之其相应的EDA软件功能完善,仿真能力好,有丰富的IP核资源,在成本和灵活性等方面都有很大优势,使得利用进行复杂数字系统的设计已成为主流。
近几年来国内外有许多学者利用系统中的某一个模块进行设计,如:数控振荡器、PN码发生器、匹配滤波器。也有学者尝试对整个系统进行设计,但这些努力大多仅限于软件上的功能仿真,并且对一些关键模块缺乏清晰的描述。
本文对扩频芯片关键模块的实现方法进行了阐述,并推导出详细参数,基于ISE 10.1实现了整个系统,最后下载到FPGA芯片中调试成功。

1 -A系统的整体框架
1.1 发射子系统

在发射子系统中,如图1所示,输入的串行二进制数据序列首先进行串并转换,分成两路(I路和Q路)速率减半的序列,由于采用QPSK调制方式,为了避免相位模糊问题,在串并转换后进行差分编码,然后将差分编码器的输出序列与PN码生成器输出的伪随机序列进行异或运算,完成信号的频谱扩展,再将扩频输出的两路数据分别与数控振荡器(NumericallyContmlkd Oscillator,NCO)的两路正交载波输出各自相乘,最后将相乘后的结果相加,这样就实现了DQPSK调制,输出的是数字化的已调信号。

本文引用地址:http://www.eepw.com.cn/article/191382.htm


1.2 接收子系统
接收系统要完成数字中频信号到基带信号的转换、信号的捕获、同步、解扩、差分解调以及并串转换等功能,如图2所示。进入接收系统的是经正交采样(Quadraturc Samping)后的数字中频信号,经下变频器生成基带信号,再将其输出送入匹配滤波器。在匹配滤波器中,主要实现信号的同步与解扩。解扩后的数据进行差分解调,差分解调过程中的中间结果送入自动频率控制(Automatic Frequency Control,AF-C)模块以生成校正信号来自动调整NCO的输出频率,最后将解调输出数据经并串转换便得到原始数据序列。



2 关键模块分析与实现
2.1 NCO模块

NCO采用Xilinx公司提供的直接数字式频率合成器(Direct Digital Synthesizer,DDS)IP核,DDS的工作原理如图3所示,在参考时钟的驱动下,N位加法器对频率控制字K和N位累加寄存器中的值进行相加,相加后的结果存入累加寄存器中,以累加寄存器中的值为地址将波形存储器里相应地址的数据读出,即输出正弦或余弦信号的幅度值。


累加寄存器长度为N,则波形存储器2N用个样点来表示正弦波的一个周期,地址每次累加K相当于每隔K个点输出一次,输出一个完整的正弦波需要时间,则DDS的输出频率fout满足关系式。当K取1时输出频率为最大频率分辨率。参数设置主时钟为100 MHz,△f=1.0 Hz,可得N=27,由于要求的输出频率为2 MHz,可得:K=2 684 355。据此对DDS IP核进行元件例化程序如下:


上一页 1 2 3 4 5 下一页

关键词: STEL 2000 FPGA 扩频通信

评论


相关推荐

技术专区

关闭