如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。第一种:雪崩破坏如果在漏极-源极间外加超出器件额定VDSS的电涌电压,而且达到击穿电压V(BR)DSS (根据击穿电流其值不同),并超出一定的能量后就发生破坏的现象。在介质负载的开关运行断开时产生的回扫电压,或者由漏磁电感产生的尖峰电压超出功率MOSFET的漏极额定耐压并进入击穿区而导致破坏的模式会引起雪崩破坏。典型电路:第二种:器件发热损坏由超出安全区域引
关键字:
MOS
基于氮化镓器件的EPC9186逆变器参考设计增强了高功率应用的电机系统性能、精度、扭矩和可实现更长的续航里程。宜普电源转换公司(EPC)新推EPC9186,这是一款采用EPC2302 eGaN®FET的三相BLDC电机驱动逆变器。EPC9186支持14 V~ 80 V的宽输入直流电压。大功率EPC9186支持电动滑板车、小型电动汽车、农业机械、叉车和大功率无人机等应用。EPC9186在每个开关位置使用四个并联的EPC2302,可提供高达200 Apk的最大输出电流。EPC9186包含所有必要的关键功能电路
关键字:
EPC GaN FET ARMS 电机驱动器
奈梅亨,2023年5月10日:基础半导体器件领域的高产能生产专家Nexperia今天宣布推出首批支持低电压(100/150 V)和高电压(650 V)应用的E-mode(增强型)功率GaN FET。Nexperia在其级联型氮化镓产品系列上增加了七款新型E-mode器件,从GaN FET到其他硅基功率器件,Nexperia丰富的产品组合能为设计人员提供最佳的选择。 Nexperia的新产品包括五款额定电压为650 V的E-mode GaN FET(RDS(on)值介于80 mΩ至19
关键字:
Nexperia E-mode GAN FET
用过MOS管的小伙伴都知道,其内部有一个寄生二极管,有的也叫做体二极管。PMOS管做开关用,S极作电源输入,D极作输出,当Vsg大于阈值电压,MOS管导通,一般MOS管的导通内阻都很小,毫欧级别,过几安培的电流,压降也才毫伏级别,此时体二极管是截至状态的。用过MOS管的小伙伴都知道,其内部有一个寄生二极管,有的也叫做体二极管。1、PMOS管做开关用,S极作电源输入,D极作输出,当Vsg大于阈值电压,MOS管导通,一般MOS管的导通内阻都很小,毫欧级别,过几安培的电流,压降也才毫伏级别,此时体二极管是截至状
关键字:
MOS 二极管
当今行业中发现的大多数 FET 都是由硅制成的,因为它具有出色且可重现的电子特性。根据摩尔定律,硅受到薄通道厚度下迁移率下降的困扰,这为高度缩放的设备保持强静电。过渡金属二硫化物 (TMD) 等二维沟道材料可用于 FET 以解决此问题。由于2D 材料具有二维表面,因此它们具有更好的迁移率水平,包括在 0.7 A 下实现激进的沟道长度缩放。自从在现代电子产品中引入场效应晶体管 (FET) 以来,理论和应用电路技术已经取得了多项改进。FET 是低频和中频的低噪声放大器以及高输入阻抗放大器、电荷敏感放
关键字:
栅极 FET
3月下旬,全球领先的连接和电源解决方案供应商 Qorvo® 在京召开了以“连接与电源——新主题、新Qorvo”的媒体活动。通过此次活动,Qorvo旨在向业内介绍Qorvo在自身移动产品和基础设施应用上的射频领导地位进面向电源、物联网和汽车等领域的最新进展。Matter出世,化解万物互联生态壁垒物联网让我们曾经畅想的万物互联生活逐渐成为现实,但要将数以百亿计的设备进行有效的互联还面临巨大壁垒,Matter 标准的出现打破了这个局面。作为Matter的积极参与者,Qorvo 率先打造符合 Matter 标准的
关键字:
Qorvo Matter SiC FET UWB
安森美GAN_Fet驱动方案(NCP51820)。 数十年来,硅来料一直统治著电晶体世界。但这个状况在发现了砷化镓(GaAs)和砷化镓、磷(GaAsP)等不同特性的材料后,已经逐渐开始改变。由开发了由两种或三种材料制成的化合物半导体,它们具有独特的优势和优越的特性。但问题在于化合物半导体更难制造且更昂贵。虽然它们比硅具有明显的优势。作为解决方案出现的两个化合物半导体器件是氮化镓(GaN)和碳化硅(SiC)功率电晶体。这些器件可与寿命长的硅功率LDMOS MOSFET和超结MOSFET竞争。GaN和SiC器
关键字:
NCP51820 安森美 半导体 电源供应器 GaN MOS Driver
晶体管是一个简单的组件,可以使用它来构建许多有趣的电路。在本文中,将带你了解晶体管是如何工作的,以便你可以在后面的电路设计中使用它们。 一旦你了解了晶体管的基本知识,这其实是相当容易的。我们将集中讨论两个最常见的晶体管:BJT和MOSFET。 晶体管的工作原理就像电子开关,它可以打开和关闭电流。一个简单的思考方法就是把晶体管看作没有任何动作部件的开关,晶体管类似于继电器,因为你可以用它来打开或关闭一些东西。当然了晶体管也可以部分打开,这对于放大器的设计很有用。晶体管是一个简单的组件,可以使用它来构建许多有
关键字:
放大器 晶体管 MOS BJT
开关电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是电源供应器的一种高频化电能转换装置,也是一种以半导体功率器件为开关管,控制其关断开启时间比率,来保证稳定输出直流电压的电源。开关电源(Switch Mode Power Supply,简称SMPS),又称交换式电源、开关变换器,是电源供应器的一种高频化电能转换装置,也是一种以半导体功率器件为开关管,控制其关断开启时间比率,来保证稳定输出直流电压的电源。在目前电子产品的飞速增长中,开关电源凭借其70%~
关键字:
瑞森半导体 MOS 开关电源
极限TP4057充电模块TP4057是一款单节锂电池专用的恒流/恒压线性充电IC,其内部带有电池反接保护及防倒充电路。该充电IC的工作电压范围为4~6V,静态工作电流仅有40μA模块尺寸8x10mm。集成锂电保护和指示灯。可作为SMT贴片模块使用贴装在其他主板上
关键字:
充电IC TP4054 TP4056 TP4057 电源管理IC MOS
随著USB PD产品的广泛应用与普及化,Infineon推出全新数位共振返驰式PWM电源控制芯片,此一架构除较现行客户常使用之ACF架构更具竞争力,在电路设计上相对容易,还可减少元件数量,且数位化的设计界面可满足不同输出瓦数的产品应用,提高在设计上的灵活度与可靠性。同时搭配Cypress PD控制芯片,借由数位控制与参数设定功能来改变输出电压,藉以符合各种不同产品的应用。同时Infineon共振返驰式电源芯片在与Cypress PD控制芯片,可大幅度提高效率与功率密度的表现,更可以减少客户的产品设计与开发
关键字:
Infineon Mos Charger AdapterXDPS2201 CYPD3174
本文对于 MOS 管工作在开关状态下的 Miller 效应的原因与现象进行了分析。巧妙的应用 Miller 效应可以实现电源的缓启动。01 Miller效应一、简介MOS管的米勒效应会在高频开关电路中,延长开关频率、增加功耗、降低系统稳定性,可谓是臭名昭著,各大厂商都在不遗余力的减少米勒电容。下面波形是在博文 ZVS振荡电路工作原理分析[1] 中观察到振荡 MOS 管栅极电压与漏极电压波形。可以看到栅极电压在上升阶段具有一个平坦的小台阶。这就是弥勒效应所带来的 MOS 管驱动电压波
关键字:
MOS Miller
2022年9月23日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 分销商贸泽电子 (Mouser Electronics) 即日起备货采用行业标准D2PAK-7L表面贴装封装的UnitedSiC(现已被 Qorvo®收购)UJ4C/SC FET。UJ4C/SC系列器件是750 V碳化硅场效应晶体管 (SiC FET),借助D2PAK-7L封装选项提供低开关损耗、在更高速度下提升效率,同时提高系统功率密度。这些FET经优化适合车载充电器、软开关DC/DC
关键字:
贸泽 D2PAK-7L UnitedSiC SiC FET
移动应用、基础设施与航空航天、国防应用中 RF 解决方案的领先供应商 Qorvo®, Inc.(纳斯达克代码:QRVO)今日宣布推出 7 款采用表贴 D2PAK-7L 封装的 750V 碳化硅 (SiC) FET。凭借该封装方案,Qorvo 的 SiC FET 针对快速增长的车载充电器、软开关 DC/DC 转换器、电池充电(快速 DC 和工业)和 IT/服务器电源应用实现量身定制。它们采用热性能增强型封装,为需求最大效率、低传导损失和高性价比的高功耗应用提供理想解决方案。在 650/750V 状态下,第四
关键字:
UnitedSiC Qorvo 750V SiC FET
Qorvo®今天宣布推出采用表面贴装 D2PAK-7L 封装的七款 750V 碳化硅 (SiC) FET,借助此封装选项,Qorvo 的 SiC FET可为车载充电器、软开关 DC/DC 转换器、电池充电(快速 DC 和工业)以及IT/服务器电源等快速增长的应用量身定制,能够为在热增强型封装中实现更高效率、低传导损耗和卓越成本效益的高功率应用提供更佳解决方案。Qorvo 的第四代 UJ4C/SC 系列在 650/750V 时具有9mΩ的业界更低 RDS(on),其额定值分别为 9、11、18、23、33、
关键字:
UnitedSiC Qorvo 电源 SiC FET
mos—fet介绍
您好,目前还没有人创建词条mos—fet!
欢迎您创建该词条,阐述对mos—fet的理解,并与今后在此搜索mos—fet的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473