摘要:针对目前市场上越来越多针对SDI信号的应用需求,提出了多路SDI电信号单波长光纤传输的实现方案,就方案中出现的由于FIFO“写满”或“读空”引起的SDI信号传输误码,提出了一种基于FPGA内部PLL的可控时钟,利用该时钟作为FIFO的读时钟,实现SDI信号无损传输。
引言
串行数字接口(Serial Digital Interface,简写为SDI)是针对演播室环境提出的用单根电缆来传输数字视音频信号的方式。在SMTPE-259M标准中
关键字:
SDI FPGA 光纤 FIFO PLL 数据还原 201503
摘要:大约三分之一的嵌入式设计人员考虑在嵌入式应用中采用FPGA,他们认为在设计中使用FPGA过于昂贵。但是,从系统级了解总体拥有成本(TCO) (由产品生命周期中的开发、改进、替换和维护成本来衡量),您会发现FPGA是分立微控制器(MCU)/数字信号处理器(DSP)/ASSP产品灵活的竞争方案。
引言
工业自动化和过程控制生产商一直面临持续的全球竞争和经济压力,商业模式和利润不断受到威胁,不得不应对成本挑战,包括:
● 利润和研发投入;
● 产品及时面市压力以适应经济状况的变
关键字:
嵌入式 FPGA 工业以太网 DSP TCO MCU 201503
摘要:当前全球制造业发展越来越呈现数字化、网络化和智能化的新特征,美国提出“工业互联网”战略、德国提出“工业4.0”战略,主要意图就是抢占智能制造这一未来产业竞争制高点。工业4.0革命将建立一个高度灵活的数字化、个性化产品与服务的生产模式,并将重组产业链分工。
第四次工业革命是绿色工业革命,一系列生产函数发生从自然要素投入为特征,到以绿色要素投入为特征的跃迁,并普及至整个社会。其核心特征应该是高效节能,网络化与模块化。
工业4.0将会通过自动
关键字:
工业4.0 物联网 FPGA 处理器 201503
在特权的上篇博文《基于FPGA的跨时钟域信号处理——专用握手信号》中提出了使用专门的握手信号达到异步时钟域数据的可靠传输。列举了一个简单的由请求信号req、数据信号data、应答信号ack组成的简单握手机制。riple兄更是提出了req和ack这两个直接的跨时钟域信号在被另一个时钟域的寄存器同步时的亚稳态问题。这个问题估计是整个异步通信中最值得探讨和关注的。
很幸运,特权同学找到了很官方的说法——《Application Note42:Metast
关键字:
FPGA 亚稳态
一、为啥要说任意分频
也许FPGA中的第一个实验应该是分频实验,而不是流水灯,或者LCD1602的"Hello World"显示,因为分频的思想在FPGA中极为重要。当初安排流水灯,只是为了能让大家看到效果,来激发您的兴趣(MCU的学习也是如此)。
在大部分的教科书中,都会提到如何分频,包括奇数分频,偶数分频,小数分频等。有些教科书中也会讲到任意分频(半分频,任意分数分频)原理,用的是相位与的电路,并不能办到50%的占空比,也不是很灵活。
但没有一本教科书会讲到精
关键字:
FPGA DDS
不得不说,SDRAM的设计是我接触FPGA以来调试最困难的一次设计,早在一个多月以前,我就开始着手想做一个SDRAM方面的教程,受特权同学影响,开始学习《高手进阶,终极内存技术指南》这篇论文,大家都知道这篇文章是学习内存入门的必读文章,小墨同学花了一些时间在这上面,说实话看懂这篇文章是没什么问题的,文件讲的比较直白,通俗易懂,很容易入手。当了解了SDRAM工作方式之后,我便开始写代码,从特权同学的那篇经典教程里面,我认真研读代码的来龙去脉,终于搞懂了特权同学的设计思想,并花了一些时间将代码自己敲一遍,
关键字:
FPGA RISC
致力于在电源、安全、可靠和性能方面提供差异化半导体技术方案的领先供应商美高森美公司(Microsemi Corporation)宣布为其旗舰SmartFusion®2 SoC FPGA和IGLOO®2 FPGA 器件的领先网络安全功能组合加入Intrinsic-ID, B.V授权许可的物理不可克隆功能(Physically Unclonable Function, PUF) 。Intrinsic-ID是基于其专利硬件固有安全技术(Hardware Intrinsic Security
关键字:
美高森美 FPGA
OFDM(正交频分复用)是一种高效的多载波调制技术,其最大的特点是传输速率高,具有很强的抗码间干扰和信道选择性衰落能力。OFDM最初用于高速MODEM、数字移动通信和无线调频信道上的宽带数据传输,随着IEEE802.11a协议、BRAN(Broadband Radio Access Network)和多媒体的发展,数字音频广播(DAB)、地面数字视频广播((DVB-T)和高清晰度电视((HDTV)都应用了OFDM技术。
OFDM利用离散傅立叶反变换/离散傅立叶变换(IDFT/DFT)代替多载波调
关键字:
OFDM FPGA
O 引 言
随着各种FFT算法的出现,DFT在现代信号处理中起着越来越重要的作用。在B3G和4G移动通信中所采用的0FDM技术,更是以IDFT/DFT来进行OFDM调制和解调制,IDFT/DFT的精度直接影响基带解调的性能。
在硬件实现中,通常影响定点化FFT算法精度的有量化误差、舍入误差和溢出误差。一旦决定了量化方式和数据位宽后,量化误差和舍入误差都是可估计的,而溢出误差则随着输入信号功率的增大而急剧增加,造成SNR严重恶化。
中射频接收时,通常使用AAGc和DAGC来改善ADC正
关键字:
OFDM FPGA
O 引言
正交频分复用(OFDM)是一种正交多载波调制技术,它将宽带频率选择性衰落信道转换成一系列窄带平坦衰落信道,在克服信道多径衰落所引起的码间干扰,实现高数据传输等方面具有独特的优势。但是由于OFDM信号频谱重叠,对信道变化很敏感,在高速移动下,信道的时变特性更加明显,此时OFDM系统载波间的正交性会遭到破坏,出现载波间干扰(ICI),这会导致系统性能明显降低。为了消除ICI,必须采用适当的均衡技术以补偿ICI。国内外许多学者对这些问题进行了大量的研究,提出了各种不同的方法,得到了一些阶段性
关键字:
OFDM FPGA
利用电力线作为信道进行通信是解决最后一公里问题的一个很好的方法。然而电力线作为通信信道,存在着高噪声、多径效应和衰落的特点。OFDM技术能够在抗多径干扰、信号衰减的同时保持较高的数据传输速率,在具体实现中还能够利用离散傅立叶变换简化调制解调模块的复杂度,因此它在电力线高速通信系统中的应用有着非常乐观的前景。文中给出一种基于正交频分复用技术(OFDM技术)的调制解调器的设计方案。
1 OFDM原理
OFDM全称为正交频分复用(Orthogonal Frequency Division Mu
关键字:
DSP OFDM 调制解调器
一、 引言
现代通信技术、微电子技术和计算机技术的飞速发展,促进了无线通信技术从数字化走向软件化。软件无线电的出现掀起了无线通信技术的又一次革命,它已经成为目前通信领域中最为重要的研究方向之一。所谓软件无线电,是指构造一个通用的、可重复编程的硬件平台,使其工作频段、调制解调方式、业务种类、数据速率与格式、控制协议等都可以进行重构和控制,选用不同的软件模块就可以实现不同类型和功能的无线电台,其核心思想是在尽可能靠近天线的地方使用宽带A/D和D/A变换器,并尽可能地用软件来定义无线功能[1]。
关键字:
FPGA 无线电
软件无线电的出现,是无线电通信从模拟到数字、从固定到移动后,由硬件到软件的第三次变革。简单地说,软件无线电就是一种基于通用硬件平台,并通 过软件可提供多种服务的、适应多种标准的、多频带多模式的、可重构可编程的无线电系统。软件无线电的关键思想是,将AD(DA)尽可能靠近天线和用软件来 完成尽可能多的无线电功能。
蜂窝移动通信系统已经发展到第三代,3G系统进入商业运行一方面需要解决不同标准的系统间的兼容性;另一方 面要求系统具有高度的灵活性和扩展升级能力,软件无线电技术无疑是最好的解决方案。用ASI
关键字:
FPGA Virtex-4 PowerPC
一、什么是对立统一
什么是CEO,就是首席执行官,是在一个企业中负责日常经营管理的最高级管理人员,又称作行政总裁,或最高执行长或大班。
那么,在FPGA系统,需不需要一个最高级别的执行官,来管理所有进程呢?为了系统的有序性,不至于凌乱、崩溃,答案必然是肯定的。
谁都知道,FPGA内部时序逻辑的工作,是通过时钟的配合来完成任务的。那么当系统中有异步时钟的时候,怎么办?每一个系统必须有一个最高级别的时钟,执行力最强;同时它担任着管理异步时钟的任务,其它异步时钟想让手下执行任务,必须告诉执
关键字:
FPGA 异步时钟
这个实验其实已经做好久了,但是一直没有做笔记,今天就把这部分的内容补一下,有兴趣的朋友可以看一下,或许对你有什么帮助,对初学者来说还是一个不错的实验。
先来了解一下VGA吧
我们家里用的台式电脑就是一个VGA显示器,小墨同学为做这方面的实验还特意买了一块7寸的VGA液晶显示器
记得当初自己也是傻得不得了,把写好的代码,烧到板子里就直接连到笔记本电脑上的VGA接口上,结果什么反应也没有,还调了一下午的程序...结果还是没反应,到群里一问才知道,原来笔记本电脑
关键字:
FPGA VGA
dsp+fpga介绍
您好,目前还没有人创建词条dsp+fpga!
欢迎您创建该词条,阐述对dsp+fpga的理解,并与今后在此搜索dsp+fpga的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473