基于高速IGBT的100kHz高压-低压DC/DC转换器
2 DCDC转换器电路设计
本文引用地址:https://www.eepw.com.cn/article/279228.htm该DC/DC转换器采用英飞凌的650V 50A高速IGBT和快速二极管模块Easy module 1B,具体电路形式见图9,主要采用的电子元件见表2。
2.1 主功率变压器设计
主变压器匝比,计算见公式1,其中和MOSFET有区别的地方在于开关器件结压降变成了IGBT的集电极到发射极压降Vcesat。更高的匝比数可以降低原边流过IGBT的电流有效值,但是另一方面,由于变压器漏感引起的丢失占空比使得最低输入电压220V和额定输出电压13.8V的有效占空比应控制在85%以内,因此最后选择匝数比为13:1:1。
(1)
为了正确选择磁芯尺寸,保证变压器不会饱和,应计算最大磁场密度 B,具体计算见公式(2)[12]。其中Ae是磁芯截面积,n1是变压器原边匝数。λ是副边的伏秒积。
(2)
计算伏秒积的公式见(3)。
(3)
2.2 同步整流电路设计
同步整流技术可以显著提高副边的整流效率,降低整流产生的损耗。常见的同步整流电路拓扑有三种,全桥整流,全波整流和倍流整流。倍流整流在这种应用中需要耐压更高的开关器件,因此会产生更大的通态损耗,系统效率在86%左右,而全桥整流和全波整流都可以达到90%以上的效率。本设计选用了全波整流拓扑,如图3所示。相比于全桥整流电路,变压器副边需要多一个中心抽头,但是所用的半导体数量会减少一半。虽然半导体上的电压应力因为副边两个绕组的关系需要耐压更高,但是MOSFET数量的减少使两种拓扑的损耗基本一致。仿真计算结果也支持了这一分析,而且全波整流在更高负载的效率也比全桥整流略有优势。
输出滤波电感的设计主要是满足电流连续,因此计算公式见4。由公式可知,提高开关频率有利于减小电感感值,也有利于较小电感尺寸。
(4)
2.3 电流检测变压器设计
常见的电流传感方案有采样电阻、霍尔传感器,电流检测变压器等等,电流检测变压器具有低成本和电气隔离的特点,本设计采用了电流检测变压器来检测电流信号。在拓扑中电流检测传感器有两种检测位置,如图4所示。
放置在直流母线侧的电流检测传感器可以检测上下臂直通短路,但是由于其负载是单向的,要避免短路时发生的磁饱和会比较困难,特别是要注意饱和点要超过主变压器原边的饱和点,否则无法检测短路电流。如果电流检测传感器的设计在主变压器的原边,由于其工作在双向模式,因此磁通密度提高了一倍。而无法检测上下臂直通的缺点通过驱动芯片来弥补,设计采用的驱动芯片具有互锁功能,有效防止上下臂直通短路。
3 测试验证结果
在100kHz开关频率下,进行了一系列的测试,以评估高速IGBT在此应用中的适应性和潜在优势。本设计出于成本和空间的考虑,没有采用外置的谐振电感,而是运用变压器自身漏感来进行谐振。从基本性能来讲同样电压电流的IGBT芯片面积只有MOSFET的六分之一,在小电流和低温条件下MOSFET具有优势。但是随着工作结温的提高的电流增大,IGBT的电流能力迅速提高,导通损耗比MOSFET明显降低,如图5所示。
3.1 关断损耗分析
如图6所示高速IGBT在此拓扑中的关断拖尾电流几乎可以忽略,和传统IGBT相比,其关断损耗显著减小。在结温较高时,拖尾电流开始显现,关断损耗也开始增加。
评论