基于多DSP和FPGA的实时双模视频跟踪装置
3.1主要算法特点分析
(1)背景差分法算法
背景差分是利用当前图像与背景图像差分来检测出运动区域的一种技术,一般能提供最完全的特征数据,但对于动态场景的变化,如光照等事件的干扰特别敏感。考虑到摄像机移动缓慢,背景图像变化比较迟缓,而运动对象相对于背景变化较快,这样相对于变化较慢的背景图像来说,可把运动对象看作是一个对背景图像的随机扰动。针对本装置的设计要求,我们应用Kalman滤波器在零均值白噪声的退化公式即渐消记忆递归最小二乘法,来更新和重建背景图像,得到时域渐消递归最小二乘法的递归式:
(2)颜色滤波去阴影算法
如果图像中具有运动阴影和分割碎块,分割所得的图像往往与实际目标不符,产生欠分割或过分割的现象。由于阴影象素的灰度值在一个局部领域中变化不是很大,所以颜色滤波主要是构造一个包含阴影的模板,再用这个模板与差分结果做逻辑与的操作,从而检出阴影。本算法比较简单,执行速度快,处理中不需要区分阴影和半阴影,而且可以将移动阴影和背景中的阴影都检出来,只是模板中的参数要根据现实情况和经验来定。由于静止物体的阴影也是不动的,所以静止目标可以归入背景中。由公式(2)可检测出动目标。
(3)形心跟踪算法
形心跟踪是将整个跟踪波门内的图像二值化,用求目标形心的办法获得目标位置参量。由于形心值是相对于目标面积归一化的值,因此形心值不受目标面积、形状以及灰度分布细节的限制。同时,形心跟踪的计算颇为简便。但是,形心跟踪器受目标的剧烈运动或目标被遮挡的影响较为严重,瞄准点漂移是远距离跟踪系统的主要误差之一。这也是我们采用目标轨迹拟合算法来外推运动目标位置,并与相关跟踪法并行工作的原因。由于形心算法比较普及,本跟踪装置直接采用了改进的形心跟踪算法,用目标峰值自适应检测算法使系统的计算可靠性和实时性达到最佳结合值。
(4)相关跟踪算法
相关跟踪是对目标图像和输入图像进行相关运算,通过对搜索区域每次运算结果进行处理获取相关峰值,从而确定目标在输入图像的位置。在图像目标背景比较复杂以及背景与目标无明显灰度差的场合,相关跟踪具有较好的抗干扰能力,可以应付一定的形变和灰度畸变,能对复杂场景中的指定目标进行稳定跟踪,并对目标交叉遮挡有较好的记忆效果,因此我们采用基于二维最小绝对差累加和算法的相关匹配算法进行图像特征识别,相似性度量为:
(5)双模式组合算法[6]
如表1所示,由于形心跟踪和相关跟踪各有优缺点,具有较大的互补性[7]
。采用形心跟踪算法的DSP和相关匹配跟踪算法的DSP同时工作,按照各自的图像分割方法分割出目标和背景,抽取目标的特征,输出目标的跟踪信息。最后在主控的TMS320c6416进行检查,把相关匹配跟踪模式中采用相关峰值的相关度函数构造的目标位置置信度和形心跟踪模式的置信度进行置信度判决,从而决定选择跟踪控制信号,同时对不适当的跟踪模块进行重新装定。
伺服电机相关文章:伺服电机工作原理
评论