新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 频率响应法--奈奎斯特稳定判据

频率响应法--奈奎斯特稳定判据

作者: 时间:2012-03-17 来源:网络 收藏
/20120317031326312.gif" width=20 align=absMiddle v:shapes="_x0000_i1116"> 以顺时针方向围绕 的一个零点- 的其余零点和极点均位于闭合曲线 之外。当点s沿着闭合曲线 走了一周时,向量 的相角变化了 ,其余各向量的相角变化都为 。这表示在 平面上的映射曲线按顺时针方向围绕着坐标原点旋转一周,如图5-36所示。由此推论,若s平面上的闭合曲线 以顺时针方向包围 的z个零点,则在 平面上的映射曲线 将按顺时针方向围绕着坐标原点旋转z周。

如果s平面上的闭合曲线 按顺时针方向围绕着 的一个极点 旋转一周,则向量 的相角变化了 。由式(5-42)可知, 的相角变化了 。这表示 平面上的映射曲线 按逆时针方向围绕其坐标原点一周。由此推广到一般,若s平面上的闭合曲线 按顺时针方向围绕着 的p个极点旋转一周,则其在 平面上的映射曲线 按逆时针方向围绕着坐标原点旋转p周。

综上所述,可得到如下的辐角原理。

辐角原理  设除了有限个奇点外, 是一个解析函数。如果s平面上的闭合曲线 以顺时针方向包围了 的Z个零点和P个极点,且此曲线不通过 的任何极点和零点,则其在 平面上的映射曲线 将围绕着坐标原点旋转N周,其中 。若 ,表示曲线 以顺时针方向围绕;若 ,则表示曲线 以逆时针方向围绕。

5.4.2

图5-37 右半平面的封闭曲线

如果闭环系统是稳定的,则其特征方程式的根,即 所有的零点均位于s的左半平面。为了判别系统的稳定性,检验 是否有零点在s的右半平面上即可。为此,在s平面上所取的闭合曲线 应包含s的整个右半平面,如图5-37所示。这样,如果 有零点或极点在s的右半平面上,则它们必被此曲线所包围。这一闭合曲线称为轨线,它是由 轴表示的 部分和半径为无穷大的半圆 部分组成。即s按顺时针方向沿着 运动到 ,尔后沿着半径为无穷大的半圆 运动到 ,其中

由于



关键词: 频率响应 奈奎斯特 稳定判据

评论


相关推荐

技术专区

关闭