基于PWM的电压调节技术

SG3524工作过程如下。
直流电源VS从脚15 接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5 V基准电压。+5 V再送到内部(或外部)电路的其他元器件作为电源。
振荡器脚7须外接电容CT,脚6须外接电阻RT。振荡器频率f由外接电阻RT和电容CT决定,f=1.18/RTCT。本设计将Boost电路的开关频率定为10 kHz,取CT=0.22 滋F,RT=5 k赘;逆变桥开关频率定为5 kHz,取CT=0.22 滋F,RT=10 k赘。振荡器的输出分为两路,一路以时钟脉冲形式送至双稳态触发器及两个或非门;另一路以锯齿波形式送至比较器的同相端,比较器的反向端接误差放大器的输出。
误差放大器实际上是差分放大器,脚1为其反相输入端;脚2为其同相输入端。通常,一个输入端连到脚16 的基准电压的分压电阻上(应取得2.5 V的电压),另一个输入端接控制反馈信号电压。本系统电路图中,在DC/DC变换部分,G3524的脚1接控制反馈信号电压,脚2接在基准电压的分压电阻上。误差放大器的输出与锯齿波电压在比较器中进行比较,从而在比较器的输出端出现一个随误差放
大器输出电压高低而改变宽度的方波脉冲,再将此方波脉冲送到或非门的一个输入端。或非门的另两个输入端分别为双稳态触发器和振荡器锯齿波。双稳态触发器的两个输出端互补,交替输出高低电平,其作用是将PWM脉冲交替送至两个三极管V1及V2的基极,锯齿波的作用是加入了死区时间,保证V1及V2两个三极管不可能同时导通。最后,晶体管V1及V2 分别输出脉冲宽度调制波,两者相位相差180毅。当V1及V2脉冲并联应用时,其输出脉冲的占空比为0%~90%;当V1及V2分开使用时,输出脉冲的占空比为0%~45%,脉冲频率为振荡器频率的1/2。
2.2 驱动电路的设计
IR2110 采用HVIC的闩锁抗干扰CMOS 制造工艺,DIP14脚封装。具有独立的低端和高端输入通道;悬浮电源采用自举电路,其高端工作电压可达500 V,dv/dt=依50 V/ns,15 V下静态功耗仅为116 mW;输出的电源端(脚3,即功率器件的栅极驱动电压)电压范围10~20 V;逻辑电源电压范围(脚9)5~15 V,可方便地与TTL,CMOS电平相匹配,而且逻辑电源地和功率地之间允许有依5 V的偏移量;工作频率高,可达500 kHz;开通、关断延迟小,分别为120 ns 和94 ns;
图腾柱输出峰值电流为2 A。
IR2110 内部由如图4 所示的三个部分组成:逻辑输入,电平平移及输出保护。如上所述IR2110的特点,可以为装置的设计带来许多方便。尤其是高端悬浮自举电源的成功设计,可以大大减少驱动电源的数目。
采用IR2110作逆变半桥的驱动电路举例。这种高压侧悬浮驱动的自举原理如图5 所示。图中C1、VD1 分别为自举电容和二极管,C2 为VCC 的滤波电容。假定在S1关断期间C1已充到足够的电压(VC1抑VCC)。当HIN为高电平时VM1开通,VM2关断,VC1加到S1的栅极和发射极之间,C1通过VM1,Rg1 和S1栅极-发射极电容Cge1放电,Cge1被充电,S1导通。此时VC1可等效为一个电压源。当HIN为低电平时,VM2开通,VM1断开,S1栅电荷经Rg1、VM2迅速释放,S1关断。经短暂的死区时间(td)之后,LIN为高电平,S2开通,VCC经VD1,S2给C1充电,迅速为C1补充能量。如此循环反复。
自举元器件的分析与设计举例。图5所示自举二极管(VD1)和电容(C1)是IR2110在PWM应用时需要严格挑选和设计的元器件,应根据一定的规则进
行计算分析。在电路实验时进行一些调整,使电路工作在最佳状态。


1)自举电容的选择IGBT 和PM(Power MOS原FET)具有相似的门极特性。开通时,需要在极短的时间内向门极提供足够的栅电荷。假定在器件开通后,自举电容两端电压比器件充分导通所需要的电压(10 V,高压侧锁定电压为8.7/8.3 V)要高;再假定在自举电容充电路径上有1.5 V 的压降(包括VD1的正向压降);最后假定有1/2的栅电压(栅极门槛电压VTH通常为3~5 V)因泄漏电流引起电压降。综合上述条件,此时对应的自举电容工程应用则取C1跃2Qg/(VCC-10-1.5)。
例如FUJ I50 A/600 V IGBT充分导通时所需要的栅电荷Qg=250 nC(可由特性曲线查得),VCC=15 V,那么C1=2伊250伊10-9/(15-10-1.5)=1.4伊10-7 F,可取C1=0.22 滋F或更大一点的,而耐压跃50 V 的电容。
在自举电容的充电路径上,分布电感影响了充电的速率。下管的最窄导通时间应保证自举电容能够充足够的电荷,以满足Cge所需要的电荷量再加上功率器件稳态导通时漏电流所失去的电荷量。因此从最窄导通时间ton min考虑,自举电容应足够小。
综上所述,在选择自举电容大小时应综合考虑,既不能太大影响窄脉冲的驱动性能,也不能太小而影响宽脉冲的驱动要求。从功率器件的工作频率、开关速度、门极特性进行选择,估算后经调试而定。
2)自举二极管的选择自举二极管是一个重要的自举器件,它应能阻断直流干线上的高压,二极管承受的电流是栅极电荷与开关频率之积。为了减少电荷损矢,应选择反向漏电流小的快恢复二极管。单从驱动PM 和IGBT的角度考虑,均不需要栅极负偏置。Vge=0,完全可以保证器件正常关断。但在有些情况下,负偏置是必要的。这是因为当器件关断时,其集电极-发射极之间的dv/dt过高时,将通过集电极-栅极之间的(密勒)电容以尖脉冲的形式向栅极馈送电荷,使栅极电压升高,而PM,IGBT的门槛电压通常是3~5 V,一旦尖脉冲的高度和宽度到达一定的程度,功率器件将会误导通,造成灾难性的后果。而采用栅极负偏置,可以较好地解决这个问题。
2.3 保护电路
电力电子常用的保护有过流保护和过压保护。
1)过电流保护在电力电子变换和控制系统运行不正常或发生故障时,可能发生过电流造成开关器件的永久性损坏,快速熔断器是电力电子变换器系统中常用的一种过电流保护措施。快速熔断器的过流保护原理是基于快速熔断器特性与器件特性的保护配合来完成的,即通过选择快速熔断器的短路容量约器件的热容量,使得当发生过流时快速熔断器先熔断,以保护器件不损坏。另一种方法是采用电流检测、比较、判断,在过流瞬间及时关断电路。
2)过电压保护电力电子设备在运行过程中,会受到由交流供电电网进入的操作过电压和雷击过电压的侵袭。同时,设备自身运行中以及非正常运行中也有过电压出现。过电压保护的基本原理是在瞬态过电压发生的时候(滋s或ns级),通过过电压检测电路进行检测。过电压检测电路中主要的元件是压敏电阻。压敏电阻相当于很多串并联在一起的双向抑制二极管,起到电压箝位的作用。电压超过箝位电压时,压敏电阻导通;电压低于箝位电压时,压敏电阻截止。
过电压检测电路原理如图6所示。当有过电压信号产生时,压敏电阻被击穿,呈现低阻值甚至接近短路状态,这样在电流互感器的一次侧产生一个大电流,通过线圈互感作用在二次侧产生一个小电流,再通过精密电阻把电流信号转变为电压信号;这个信号输入到电压比较器LM393 后,LM393 输出高电平,经过非门A 输出的控制脉冲2控制电源回路,断开开关电源电路。当输出的高电平输出SG3524的脚10时,封锁输出脉冲,进行保护。

2.4 DC/AC逆变电路结构
DC/AC 变换采用单相输出,全桥逆变形式,由4个IGBT(G20N40L)构成桥式逆变电路,最高耐压800 V,电流20 A,利用半桥驱动器IR2110提供驱动信号,其输入波形由SG3524 提供,同理可调节该SG3524的输出驱动波形的D50%,保证逆变的驱动方波有共同的死区时间。
3 结语
结合高校学生《电力电子技术》课程的实践教学,对上述理论分析和方案设计,通过安装和调试进行实验,并应用在风扇、电炉等家用电器的控制,效果良好,达到了预先设计要求。本设计也可引入闭环控制,实现自动调节。随着智能电力模块(如IPM)的广泛应用,不仅体积小,转换效率高,而且具有各种保护功能,同时具有程控接口,在实现对整个系统的有效控制和保护方面将更加完善。
评论