基于FPGA的数字激光自动功率控制系统设计
文中SOC主要实现的功能是控制各个子系统的复位(RESET)与使能(EN),为各个子系统提供时钟信号(CLK),并可以通过读(RD)、写(WR)、片选(CS)3个控制信号、32位的数据输入总线(DIN0~DIN31)、32位的输出数据总线(DOUT0~DOUT31)、32位的地址总线(ADDR0~ADDR31)与各个子系统进行读、写操作。对于APC子系统,SOC主要完成APC模块和PWM模块的系统复位、使能,为APC模块、PWM模块提供时钟,设置APC模块的控制、状态寄存器等功能。
APC结构是激光功率自动控制系统的主体结构。主要功能有两个:1)完成对A/D芯片的控制,包括A/D芯片工作方式的设定(通过设置A/D芯片的控制寄存器)、A/D芯片的控制信号的产生(时钟信号ADCLK、使能信号ADCS、读控制信号ADRD、写控制信号ADWR、并接收A/D转换完成信号ADINT和A/D转换结果ADD0~ADD9);2)对A/D转换的结果(ADD0~ADD9)进行处理,即将采样并转换的激光发射器的输出功率与设置的多级功率进行比较,区分出功率等级,再将标准等级的功率值与实际采样转换功率值进行比较,并根据比较结果给出新的LD驱动功率值。
PWM是根据APC模块输出的新的LD驱动功率值,通过调制方波的占空比来改变输出的直流分量,经过低通滤波器后得到需要的模拟电压信号,来驱动LD。使用PWM模块一可以用数字电路设计取代昂贵的D/A转换器,二是可以灵活的增加或减少被控制LD的数量。
3 自动激光功率控制设计的A/D转换模块设计
本设计中的模/数转换芯片选用的是TI公司生产的TLV1571芯片,TLV1571是一款10位单通道模拟输入的模/数转换器,内部有两个8位的控制寄存器CR0、CR1来控制ADC的工作模式,包括软件转换或硬件转换开始选择、内部或外部时钟选择、二进制或二进制补码输出、硬件或软件配置等工作模式。本设计通过将TLV1571的两个控制寄存器设置在外部时钟信号,软件控制转换工作方式,其工作时序如图4所示。本文引用地址:https://www.eepw.com.cn/article/190252.htm
评论