新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 功率MOSFET抗SEB能力的二维数值模拟

功率MOSFET抗SEB能力的二维数值模拟

作者: 时间:2012-03-06 来源:网络 收藏

2.2 优化仿真的物理模型
的物理机制和实验结果都表明,效应与其寄生晶体管VQ1的导通以及随后器件的二次击穿特性有重要关系,而与入射粒子的种类和剂量无直接关系,重离子的辐射只是一种触发机制。因此,在SEB模型的建立中,可以将入射粒子的影响近似为它所引发的等离子体丝流在源极PN结上的偏压。文献通过将背栅短路的p源极和n源极分开,串联不同的接触电阻(Rp和Rn)来表征这种思想,如图2所示,并经实验研究和仿真验证了该方案的可行性。同时指出,器件的抗SEB直接由器件的二次击穿特性决定。二次击穿的电流和电压越高,器件抗SEB越好。在此借鉴这种思想,通过器件仿真,明确缓冲层在抗SEB效应中的作用,给出一种三缓冲层的优化结构。

本文引用地址:https://www.eepw.com.cn/article/177788.htm

b.jpg


器件仿真中采用了浓度温度相关载流子迁移率模型、SRH复合模型、Auger复合模型以及碰撞离化和禁带变窄模型,暂未考虑热效应。为了更接近实际情况,采用IR 600VN的结构,分别取接触电阻Rp=2.5kΩ,Rn=250Ω。

3 缓冲层提高抗SEB能力的作用
3.1 无缓冲层
首先对普通无缓冲层进行了器件仿真,仿真结果如图3所示,由图可见,器件的静态I-V特性存在3个拐点。

c.jpg


(1)A点对应正常PN结击穿,此时漂移区完全耗尽,空间电荷区载流子浓度近似为本征激发浓度,p-body/n-drift界面处电场最大,达到临界击穿值,如图3b,c所示;
(2)随着漏电流Id的增加,漂移区载流子浓度增加,n-drift/n+-sub高低结附近出现电子积累,该处电场增强,直到电子和空穴的浓度达到背景掺杂浓度,此时漂移区承受的电压达到最高,为B点。Id继续增大,漂移区载流子浓度继续增高,“耗尽层”收缩,电子积累层展宽,漂移区电场降低,器件承受的电压下降,出现“负阻区”。B点电流为负阻转折临界电流IB,该电流越大,进入二次击穿需要的临界辐照强度越高,器件抗SEB能力越强。IB是表征器件抗SEB能力的一个重要标志;
(3)当Id增加到一定程度,n-drift/n+-sub高低结附近电场达到临界击穿电场,发生二次击穿,这就是C点。若C点电压Uc高于器件反向阻断时的工作电压,则器件受辐照后不会诱发二次击穿。因此Uc的高低,也是表征器件抗SEB能力的物理量,Uc越高,器件抗SEB能力越强。改善器件抗辐照能力,就是通过提高IB和Uc来实现。

电磁炉相关文章:电磁炉原理




评论


相关推荐

技术专区

关闭