新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 电力线仿真系统的FPGA设计与实现

电力线仿真系统的FPGA设计与实现

作者: 时间:2012-06-29 来源:网络 收藏

2.2 噪声的分类
Manfred Zimmermann将噪声分为:
(1)有色背景噪声。这类噪声具有相对低的功率谱密度,并且功率随着频率的变化而变化。这类噪声由大量低功率噪声源叠加而成,其功率谱密度往往随时间变化,变化周期一般为几分钟到几个小时。
(2)窄带噪声。这类噪声常常由经过幅度调制的正弦信号产生,最常见的源是由无线电广播站的发射信号耦合到上产生。
(3)与电网频率异步的周期脉冲噪声。这类噪声的频率一般为50 Hz~200 kHz之间,因此这类噪声具有离散的线谱,谱间隔即为噪声频率。该噪声通常由开关电源或其他用电器,如CRT显示器等造成。
(4)与电网频率同步的周期脉冲噪声。这类噪声的频率在我国一般为50 Hz或100 Hz。这类噪声持续时间很短,通常为μs级。它有随频率降低的频谱密度。这类噪声由供电电源通过整流二极管引起,因此与工频交流电同步。
(5)异步脉冲噪声。这类噪声是由于各种电子或者机械的开关瞬态造成。这类噪声通常随机出现,持续时间从μs到ms级不等。它的功率谱密度很大,最大比背景噪声高50 dB以上。
这5类噪声中,前3类的统计特性变化较慢,一般变化周期为数秒,数分钟甚至数小时,而功率谱通常较低,因此这几类噪声可以统称为背景噪声。而后两类噪声时变性很强,一般在μs和ms级。最关键的是,这两类噪声功率谱密度值通常很大,因此能造成比特错误甚至是突发连续错误。因此这两类噪声是电力线通信中需要被考虑和克服的主要难点。
Michael Bauer对电力线的脉冲噪声进行了测量和,提出脉冲噪声的时域特性可以用式(10)逼近,其结果如图4所示。
g1.jpg

本文引用地址:https://www.eepw.com.cn/article/176809.htm

g.JPG


为便于分析,可以对上述电力线脉冲噪声进行简化。认为当上述脉冲的包络达到一定值时为一个脉冲的开始,下降到一定值后为该脉冲结束。简化的电力线脉冲噪声的特性可以用3个参数进行描述:脉冲幅度A,脉冲宽度tw和脉冲到达时间tarr。按照上述模型,文献对时域特性进行了统计分析:脉冲噪声宽度tw一般为数十μs,幅度为数百mV,功率谱高出背景噪声约50 dB,在家用电力线环境中,脉冲噪声出现时间的比率约为0.001 35%,平均出现频率为0.122次/s。

3 算法的
3.1 电力线信道的
利用式(9)可以针对某一特定信道进行基于测量的建模。为使仿真结果不失一般性,根据实际电力线信道中大量存在的随机分布分支,可以假设冲击信号通过该信道将随机在不同时刻产生不同幅值的信号在接收端进行叠加,根据中心极限定理,大量独立同分布的随机变量的和的分布服从高斯分布。因此,信道响应的包络服从瑞利分布。当信道中存在直射分量时,即电力线信道中的情况,随机变量服从均值不为零的高斯分布,此时,信道响应的包络服从莱斯分布。即
h.JPG
其中,A为主信号即直射信号的峰值;I0()是修正的0阶第一类贝塞尔函数。莱斯分布常用参数K来描述,K定义为确定信号的功率与多径分量方差之比。
在Matlab中,通过调用莱斯信道函数可以生成莱斯信道滤波器,使用该滤波器对信号进行处理可以模拟莱斯信道。莱斯信道的函数原型为
CHAN=RICIANCHAN(TS,FD,K,TAU,PDB)
其中,TS为采样频率;FD为多谱勒频移;K为莱斯分布参数;TAU为各路径延时向量;PDB是相应路径的增益向量。



评论


相关推荐

技术专区

关闭