基于FPGA的温度自动控制系统
2.3 FPGA设计
FPGA是该温度控制系统设计的核心,在FPGA中实现加热制冷切换控制模块以及A/D采样模块2个核心部分,在加热制冷控制切换模块中,采用2个继电器控制半导体控制制冷片两端电压极性,A/D采样模块采用状态机控制A/D转换器对放大器OPA277的采样过程。具体电路如图4所示。由以上实验数据可以看出,温度读数精度可以达到0.1℃,同时设定的温度读数和最终结果最大偏离为1.1℃,说明该温度自动控制系统精度较高。同时通过第2组数据可以看出,当温差大于15℃时达到指定温度所需的时间只要148 s,说明该系统设计平衡温度时间较短。本文引用地址:https://www.eepw.com.cn/article/162852.htm
3 系统软件设计
该系统充分利用了FPGA的强大功能,将LCD接口电路,键盘接口电路,信号串并行转换电路,以及DDS信号发生器全部构建在内部,使得硬件连接简单明了,外部硬件只有2个模块:温度信号采集转换模块和制冷片驱动模块。由于外设相对简单,调试时候相当方便,同时可以方便修改FPGA内部结构对系统的功能进一步修改和扩展,使得系统功能更强大,应用范围更广泛。图5为该系统软件设计流程。
4 测试数据与分析
考虑到外部环境的变化会对系统调温造成一定干扰,因此将装置放在装有空调的实验室进行调试,同时为了精确测定木盒内部温度,以便选择相应的PID控制系数,选用高精度的数字温度计同时对盒内温度进行实时测量。表1给出了实际测试的比较结果。
5 结束语
本系统软件设计的关键在于控制算法。PID结合拟合分段算法必须尽量减少其他因素的影响,精确确立相应的PID参数。而硬件设计应选用高精度高速器件,以获得足够快的速度与足够高的精度,绝热和散热是设计成功的决定因素。木盒绝热性差,盒内温度受到外界影响大,只有绝热好,温度变化才能理想。此外,制冷片热端的散热对系统也有很大影响。系统测量的误差来源主要是温度传感器在测量温度时存在非线性误差,前级放大电路引入新的干扰,A/D采样时带来的量化误差等。另外,由于后级功率控制电路中的光电耦合开关具有一定的功率损耗,导致控制加热或升温时间内达不到设定的功率,以致温度调节存在误差。
半导体制冷相关文章:半导体制冷原理
评论