关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 光伏并网逆变器控制和仿真

光伏并网逆变器控制和仿真

作者:时间:2012-08-01来源:网络收藏

摘要:为了达到提高光伏的容量和性能目的,采用并联型注入变换技术。根据结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏结构,并在软件PSCAD中搭建光伏电池和逆变器模型,最后通过与实验验证了理论的正确性和策略的可行性。
关键词:太阳能光伏发电系统;太阳能电池组件;变换器;PSCAD

近年来,应用于可再生能源的变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。

1 逆变器原理
该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻重的作用,决定着光伏发电系统的投资和收益。市场主流光伏变换器大都采用电压源型变换器,因为光伏电池的电流源输出特性,所以为满足光伏电池的直流端电压可能大幅度变化的特性,都采用二级变换的技术方案,这导致变换效率的降低。大功率电流源变换技术因为强迫断流缓冲电容的高价,低可靠性,使电流源型变换器的应用受到限制。注入式电流源型变换器的直流侧电流电压全控特性,使光伏电池发出的直流电仅经一级变换就可以完成,这一的特性使电流源型变换器有可能成为高效的光伏变换技术方案。

本文引用地址:http://www.eepw.com.cn/article/160225.htm

。构成与Y/△相连的6脉波变换器的触发脉冲整体滞后于与Y/Y相连的6脉冲变换器30°,使得两变换器的输出在变压器一次侧各相电压同相。图中的注入电路是由晶闸管与二极管的串联或反串联构成,与上桥所接的开关是晶闸管与二极管反串,下桥则相反,通过对晶闸管发出不同触发脉冲来实现逆变器的四象限运行,同样使上桥注入理想电流波形,使波形输出理想。

f.JPG


图6下主桥注入电流波形上部与下部对应三相桥输出直流电流大小相等,相位差为15°,电感支路电流为叠加少量纹波的直流,各支路电流平均值为IDC/6。交流电压、电流波形见图7。多电平电流波形的正弦度较好,电压波形有明显的毛刺,这是由开关切换时电感能量转移引起的,各开关器件引入阻容吸收回路后,可使电压毛刺明显减少。

a.JPG


图8中,CH1是A相电压波形;CH2是B相电压波形;CH3是C相电压波形。结论是三相电压正弦波形上叠加一些毛刺,与相吻合。

b.JPG



3 实验结论
各注入支路电力电子开关最佳组合方案的确定。多个注入支路具有多种开关组合方案,如何以较低复杂程度的开关组合方案实现变换要求,是研究的主要技术难点之一。在仿真中,使用PSCAD做了6级电流注入的研究,证明了该系统无需加设滤波器以及采用PWM技术,就能得到理想的输出波形。正是由于该装置具有非常低的谐波畸变率以及低的开关损耗,因此该装置很适合应用于大功率的应用场合。



评论


相关推荐

技术专区

关闭