新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于Windows Mobile嵌入式系统的类圆管材识别与计数系统研究

基于Windows Mobile嵌入式系统的类圆管材识别与计数系统研究

作者: 时间:2010-10-09 来源:网络 收藏

灰度图是只含亮度信息而不含色彩信息的图像,它把亮度值量化为0到255共256级,其中0最暗(全黑),255最亮(全白)。R、G、B分量的值是相等的,且称之为灰度值,即:

经实验与理论推导证明,当ωR=0.30,ωG=0.59,ωB=0.11时,能获取到最合理最适合图像处理的灰度图像。

3.3 图像的增强

横截面图像处理的过程中,实际获得的图像一般都因灰尘、光照等某种干扰而含有噪声,因而会影响图像质量。为了改善图像质量,降低或消除噪音影响,还需要对图像进行增强处理。为了保护图像中目标区域的边缘特征,并且能够平滑噪声,本主要采用图像增强中的图像平滑方法,也就是中值滤波法,并通过修改像素灰度值的方法来减少和消除图像中的高频噪音,改善图像对比度,提高的准确率。

中值滤波法属于空域处理中的非线性图像平滑方法,它一般是在二维坐标(x,y)内创建一个大小为(2m+1)×(2m+1)滑动窗口,并对窗口内的各像素灰度值进行排序,再用排序后的中值来替代滑动窗口的原中心像素。其排序后的中值为(i,j):

图3为中值滤波平滑后的图像。相对来说,中值滤波法可以克服线性滤波所带来的图像细节模糊等现象,能够比较好的保护源图像边缘,而且对滤除脉冲干扰及颗粒噪声最为有效。

3.4 图像的分割

图像分割是依据图像的灰度、颜色或几何性质将图像中具有特殊含义的不同区域分开。为了将的横截面特征从背景中提取分离出来,我们选用二值化方法来使图像只具有两个灰度级,即0和255,也就是黑和白。为了将目标从图像中分割出来,可将其灰度值设为255,将背景的灰度值设为0。

实现图像二值化有直方图统计法、阈值分割法等。考虑到的性能需求,这里采用阈值分割法进行图像的二值化。设输入图像为F(i,j),输出图像为G(i,j),以(i,j)代表任一点像素,f(i,j)代表输入图像该点的灰度值,g(i,j)代表输出图像该点的灰度值,那么,阈值分割可用公式表示。

若图像分为目标与背景,所选阈值为T,则有:

这样,采用T就可将图像分为背景和目标,所得的图像称为二值图像。

linux操作系统文章专题:linux操作系统详解(linux不再难懂)


评论


相关推荐

技术专区

关闭