新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 可提供任意极性电压和电流的四象限电源

可提供任意极性电压和电流的四象限电源

作者:时间:2013-05-18来源:网络收藏

  常规的电源只能工作于第一象限,为负载提供正的输出电压和;或者,通过故意将输出误接,作为“负”电源静态地工作于第三象限。但是,常规的电源既不能工作在第二象限(例如,作为负电源的可调负载),也不能工作于第四象限(例如用特定恒流进行电池放电测试)。此外,它还不能作为负载条件或控制输入的函数,在各种工作模式之间进行天衣无缝的转换。图 1 所示电路采用了“互补的”传输晶体管配置,具有类似普通音频功率放大器的输出拓扑结构,可以实现全四象限功能。这一互补部分在较低设计中可以是基本的运算放大器输出端,而在涉及较大功率的情况下,可以使用外接功率 MOSFET。当采用 LT1970 功率运算放大器来控制电路的工作时,由于它具有内部闭环限流特性,控制各种工作模式下的输出就变得非常简单。

可提供任意极性电压和电流的四象限电源

  至少可以提供 ±16V 的调节范围,同时具有高达 ±2A 的输出能力。图 1 示出了基于 LT1970 的基本稳压器电路部分。图 2 示出了用户控制模拟电路部分,它使用 LT1790-5 基准和 LT1882 四精密运算放大器。整个电路由一个预先稳压的 ±17V 主电源(图中未示出)供电。你可以配置用户控制电位VSET和ILIMIT来分别提供缓冲的命令信号VCONTROL和ICONTROL(图 2)。你可以将VCONTROL从-5V调到 5V,然后 LT1970稳压电路再将VCONTROL放大,形成标称的 ±16.5V 输出。你可将ICONTROL从 0V调到 5V;5V 代表最大用户极限命令。VCSNK和VCSRC微调电位器对ICONTROL信号进行衰减,为的是分别为吸入模式和供给模式设置精确的满刻度电流(图1)。
  负载回路中的一只 0.1Ω 电阻器检测输出电流,并在限流工作期间为 LT1970 提供反馈。有了这只检测电阻器,只要将电流极限微调电位器调到 100%,就可使 LT1970 将输出电流限制在大约 ±5A。但是,由于本电路所要求的最大输出电流为 2A,所以你在校准时可将电位器调大约 40%。为了防止低输出电流时的内部控制争用,LT1970 设置一个与检测电阻器上大约40mA电流对应的最小电流极限阈值。LT1970 的另一个很有用的功能是可以提供状态标志,在本例中,状态标志只是驱动前面板LED指标何时进行限流操作。LT1970 采用双电源连线,从而能对模拟控制部分和内部输出部分独立供电。这种配置的灵活性使你可以通过 V (引脚 19)和 V-(引脚 2)连线中的电阻直接检测运算放大器的输出电流。有了这一功能,就能利用电流反馈方法建立 MOSFET 输出器件的 B 类工作状态,因为在这种状态下,运算放大器的输出电流被转换为栅极驱动电位,从而使 MOSFET 仅仅达到帮助运算放大器提供输出命令所需的导通程度。

可提供任意极性电压和电流的四象限电源

  由于电源必须驱动电容性重负载(即具有大电容值旁路电容的电路),又由于任何过压都可能会损坏电路,所以要密切注意补偿运算放大器在各种负载条件下的最小过冲。与大多数运算放大器一样,LT1970 的内部回路反馈和外部回路反馈都能达到容性负载容差。在这种情况下,运算放大器本身与负载是电阻去耦的。LT1970 的直流反馈采用差分电压检测来消除调节误差,否则会由于电流检测和与负载串联的引线电阻而产生调节误差。你可以在输出端连接两只廉价的数字式面板电表,实时监视输出情况(图 1)。(两只数字式面板电表并不共享“公共”连线,以免它们供电的复杂化。)请注意:所选的电流检测电阻能优化具有普通 ±200-mV 满刻度灵敏度数字面板表的显示,例如,可以显示到 ±1.999A。要注意的是:当你使用这种代替普通单象限电源为敏感的电子设备供电时,将一只反向偏置的肖特基二极管(例如 1N5821 的阴极)连接到正连线和输出接线柱是一个很好的做法。此外,你可以在设计中使用断路继电器和电源定序器,以保护负载在主电源开启和关闭时不受强列反向瞬态过程的影响。
  对任何一家电子实验室来说,可调电源都是一种不可缺少的工具。如果可调电源能在供给和吸入两种方向上连续调到0V,可调节地限制电流或两种功能兼而有之,则它在许多情况下就更有用。有了这些额外功能,就能很方便地驱动正在开发或测试的各种电路或对这些电路加负载,否则就需要专用的或定制的设备,如有源加载单元或直流补偿发生器。你如果采用多功能LT1970功率运算放大器来设计线性稳压器,就可以轻松获得这些功能,因为LT1970具有内置的可调节、闭环限流等功能。

基尔霍夫电流相关文章:基尔霍夫电流定律




评论


相关推荐

技术专区

关闭