关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 为工业4.0启用可靠的基于状态的有线监控 — 第2部分

为工业4.0启用可靠的基于状态的有线监控 — 第2部分

—— Enabling Robust Wired Condition-Based Monitoring for Industry 4.0—Part 2
作者:ADI 公司 Richard Anslow 系统应用工程师 Dara O’Sullivan 系统应用工程师时间:2020-06-15来源:电子产品世界收藏


本文引用地址:http://www.eepw.com.cn/article/202006/414223.htm

简介

在“ 启用可靠的基于状态的有线监控 — 第1部分 ”一文中,我们介绍了ADI公司的有线接口解决方案,该方案帮助客户缩短设计周期和测试时间,让工业CbM解决方案更快地进入市场。本文探讨了多个方面,包括选择合适的加速度计和物理层,以及性能和电源设计。此外,还包括第一部分介绍的三种设计解决方案和性能权衡。本文为第二部分,着重介绍第一部分展示的SPI至RS-485/RS-422设计解决方案的物理层设计考量。

实现有线物理层接口的常见挑战包括管理可靠性和数据完整性。但是,在RS-485/RS-422长电缆上分布SPI之类的时钟同步接口,同时在相同的双绞线(虚假电源)上部署电源和数据时,会带来更多挑战。本文讨论以下关键问题,并就物理层接口设计提供建议:

◆   管理系统时间同步

◆   推荐的数据速率与电缆长度

◆   适用于共用电源和数据架构的滤波器设计和仿真

◆   虚假电源结构中的无源元件性能权衡

◆   元件选择和系统设计窗口

◆   试验性测量

fig-01.jpg

图1.采用与不采用RS-485/RS-422长电缆的系统的MISO数据和SPI SCLK同步。

时间同步和电缆长度

设计SPI至RS-485/RS-422链路时,电缆和元件会影响系统时钟和数据同步。在长电缆中传输时,SCLK信号会在电缆中产生传播延迟,100米长的电缆会延迟约400ns到500 ns。对于MOSI数据传输,MOSI和SCLK会被电缆延迟同等时间。然而,从从机MISO发送到主机的数据会出现两倍传播延迟,因而不再与SCLK同步。可能的最大SPI SCLK基于系统传播延迟设置,包括电缆传播延迟,以及主机和从机元件传播延迟。

图1展示系统传播延迟如何导致SPI主机上出现不准确的SPI MISO采样。对于没有采用RS-485/RS-422电缆的系统,MISO数据和SPI SCLK会以低延迟或无延迟同步。对于采用了电缆的系统,SPI从机上的MISO数据与SPI SCLK之间存在一个系统传播延迟,如图1中的tpd1所示。回到主机的MISO数据存在两个系统传播延迟,如tpd2所示。当数据由于电缆和元件传播延迟而右移时,会发生不准确的数据采样。

为了防止出现不准确的MISO采样,可以缩短电缆长度、降低SPI SCLK,或者在主控制器中实施SPI SCLK补偿方案(时钟相位偏移)。理论上,系统传播延迟应该小于SCLK时钟周期的50%,以实现无错通信;在实践中,可以将系统延迟限值确定为SCLK的40%,这可以作为一般规则。

图2针对1.1部分中描述的两个SPI至RS-485/RS-422设计提供SPI SCLK和电缆长度指南。这种非隔离设计使用了ADI公司具备高速稳健性的小型RS-485/RS-422器件( ADM3066E 和 ADM4168E )。这种隔离设计还采用了ADI公司的iCoupler®信号和电源隔离 ADuM5401 器件,可以为SPI至RS-485/RS-422链路提供更高的EMC稳健性和抗噪声干扰性能。这种设计会增加系统传播延迟,导致不可在更高的SPI SCLK速率下运行。在更长的电缆(超过30米)中传输时,强烈建议增加隔离,以帮助消除接地回路和EMC事件的影响,例如静电放电(ESD)、电快速瞬变脉冲群(EFT),以及与数据传输电缆耦合的高压浪涌。当电缆长度达到或超过30米时,隔离和非隔离设计的SPI SCLK和电缆长度性能相似,如图2所示。

fig-02.jpg

图2.针对隔离和非隔离设计的SPI SCLK和电缆长度指南。

虚假电源

fig-03.jpg

图3.虚假电源物理层的交流和直流电压电平。

背景知识

虚假电源将电源和数据部署在一根双绞线上,在主机和从机之间实现单电缆解决方案。将数据和电源部署在同一根电缆上,可以在空间有限的边缘传感器节点上实现单连接器解决方案。

电源和数据通过电感电容网络分布在单根双绞线上,具体如图3所示。高频数据通过串联电容与数据线路耦合,可以保护RS-485/RS-422收发器免受直流总线电压影响,如图3a所示。图3所示为通过连接至数据线路的电感连接至主机控制器的电源。如图3b所示,5V直流电源对交流数据总线实施偏置。在图3c中,电流路径显示为从机和主机之间的IPWR,使用电缆远端基于状态监控(CbM)的从机传感器节点上电感从线路中获取电源。

fig-04.jpg

图4.SPI至RS-485/RS-422设计和虚假电源滤波器电路。

高通滤波器

在本文中,假设将虚假电源电感电容网络部署到两根电缆中,这会部署SPI MISO信号的RS-485/RS-422转换。图4描述主机和从机SPI至RS-485/RS-422的设计,以及SPI MISO数据线的虚假电源滤波器电路。滤波器电路采用高通电缆,所以要求传输的数据信号不能包含直流内容或极低频率的内容。

图5所示为二阶高通滤波器电路,这是对图4的简化演示。RS-485/RS-422发射器的电压输出标记为VTX,R1具备15Ω输出电阻。R2为30 kΩ,是RS-485/RS-422接收器的标准输入电阻。电感(L)和电容(C)值可以选择,以匹配所需的系统数据速率。

选择电感(L)和电容(C)值时,需要考虑最大的RS-485/RS-422总线压降和压降时间,如图6所示。存在一些标准,例如对于单根双绞线以太网2,指出的最大可允许压降和压降时间如图6a所示。对于有些系统,最大的可允许压降和压降时间值可能更大,受信号极性交越点限制,如图6b所示。

压降和压降时间可与图5中的仿真配对,以确定系统的高通频率。

对于衰减出色的系统,高通滤波器截止频率和压降要求之间的关系如公式1.3所示

Eq-01- 为工业4.0启用可靠的基于状态的有线监控 第二部分.jpg

在SPI至RS-485/RS-422通信系统中增加虚假电源时,很显然可允许的最低SPI SCLK速率会受虚假电源滤波器元件限制。

为了实现不含位错误的可靠通信,需要考虑最糟糕场景下的最低SPI SCLK,例如,当所有的SPI MISO采样位处于逻辑高电平时,如图7所示。如果所有的MISO采样位都处于逻辑高电平,会导致位数据数率低于系统SPI SCLK。例如,如果SPI SCLK为2 MHz,且所有16个位都处于逻辑高电平,那么虚假电源LC滤波器网络的速率相当于125 kHz的SPI MISO位数率。

如“时间同步和电缆长度”部分所示,电缆长度越长,需要的SPI SCLK速率越低。但是,虚假电源会限制最低的SPI SCLK速率。要平衡这些对立的要求,就需要小心选择和确定无源滤波器元件的特性,尤其是电感。

fig-05.jpg

图5.RS-422发射数据路径和RS-485/RS-422接收数据路径的二阶高通滤波器。

无源元件选择

在选择合适的功率电感时,需要考虑许多参数,包括足够的电感、额定/饱和电流、自谐振频率(SRF)、低直流电阻(DCR)和封装尺寸。表1提供选择的功率电感和参数。

额定电流需要满足或超过远程供电的传感器节点的总电流要求,额定饱和电流需要更大。

此电感不会给交流数据造成高于其SRF的高阻抗,在达到某个点之后,会开始呈现电容性阻抗特性。选择的电感SRF会限制在SPI至RS-485/RS-422物理层上使用的最大SPI SCLK,如图1所示。在长电缆上使用时,可能不会接触到SRF电感;例如,电缆超过10米时,可能无法达到11 MHz SPI SCLK速率(产品型号为744043101的SRF)。在其他情况下,在长电缆上运行时,电感SRF可能达到更低的SPI SCLK速率(2.4 MHz、1.2 MHz)。如前所述,在虚假电源滤波器网络中使用时,电感也会限制可允许的最低SCLK速率。

值更大的电感可以采用12.7 mm × 12.7 mm封装,值更小的电感可以采用4.8 mm × 4.8 mm封装。

选择合适的直流电压隔离电容时,受限因素包括瞬态过电压额定值和直流电压额定值。直流电压额定值需要超过最大的总线电压偏置值,具体如图3所示。电路或连接器短路时,电感电流会失衡,会被端电极阻抗消耗。出现短路时,需要设置隔直电容的额定值,以实现峰值瞬态电压。例如,在低功率系统中,电感饱和电流约为1 A时,对应的隔直电容额定值至少为4直流50 V4

fig-06.jpg

图6.RS-422接收器的压降和压降时间。

表2显示在通过权衡这些对立要求,以最小化电感尺寸时,会因为物理限制(内部绕组)等受到限制。

表1.选择的功率电感参数

产品型号

L

 (µH)

IRATED

(mA)

自谐振频率

(SRF)(MHz)

直流电阻

(DCR)(Ω)

封装尺寸

(mm)

744043101

100

290

11

0.6

4.8 × 4.8

LPS8045B-105

1000

230

1.3

3.22

8.0 × 8.0

76877530

300

2.4

3.3

7.8 × 7.0

SDR0805-102KL

210

3.0

4.5

7.8 × 7.8

7687714222

2200

260

1.2

6.5

10 × 10

SRR1208-222KL

280

0.65

4.2

12.7 × 12.7

表2.功率电感——对封装尺寸的限制

参数

对封装尺寸的影响

足够高的电感

电感值越高,内部绕组越多,封装尺寸越大。

更高的SRF

SRF越高,内部绕组越少,封装尺寸越小。

更高的额定和饱和电流

内部绕组更少,但封装尺寸更大。

低DCR

要实现更低的DCR,电缆需要更粗,且减少绕组。



上一页 1 2 下一页

关键词: MEMS EMC 工业4.0

评论


相关推荐

技术专区

关闭